

Pre-service teachers' pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools

Sebastian Gerber Prof. Dr. Hans-Stefan Siller

(University of Wuerzburg)

Jascha Quarder Prof. Dr. Gilbert Greefrath

(University of Muenster)

Professional competencies of pre-service mathematics teachers

 pedagogical content knowledge of mathematics teachers in large-scale studies

(Blömeke et al., 2014; Kunter et al., 2013)

 pedagogical content knowledge of pre-service mathematics teachers <u>specifically for mathematical</u> <u>modelling</u>

(Wess et al., 2021a; Wess et al., 2021b)

increasing importance of digital tools/technology

(Drijvers et al., 2016)

Research question

To what extent can the pre-service teachers' pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools be empirically captured as a construct?

PCK for teaching simulations and mathematical modelling with digital tools

knowledge about interventions

- characteristics of suitable interventions
- effects of suitable interventions

knowledge about simulation and modelling processes

- phases in the simulation and modelling process with digital tools
- difficulties in the simulation and modelling process with digital tools

knowledge about simulation and modelling tasks

- characteristics of simulation and modelling tasks with digital tools
- analyses of simulation and modelling tasks with digital tools

knowledge about aims and perspectives

- simulation and modelling with digital tools cycles
- aims and perspectives

(following Borromeo Ferri & Blum, 2009; Borromeo Ferri, 2018; Wess et al., 2021a; Wess et al., 2021b)

Results

PCK for teaching simulations and mathematical modelling with digital tools

	knowledge about interventions	knowledge about simulation and modelling processes	knowledge about simulation and modelling tasks	knowledge about aims and perspectives
Scale →	Interventions	Processes	Tasks	Aims and Perspectives
Number of items	 pre-piloting one-parameter Rasch model 			
EAP reliability				
Andersen test				
MNSQ	(vgl. Gerber et al. (angenommen))			

Discussion

- Pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools can be adequately captured as a construct using the developed test instrument (in the studied group).
- The data collected confirms the four scales *tasks*, *aims and perspectives*, *processes* and *interventions*.
- The scales *tasks* and *aims and perspectives* need to be focused on separately due to the comparatively poorer EAP reliabilities.

References I

Blömeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W. H. (Eds.) (2014). *International perspectives on teacher knowledge, beliefs and opportunities to learn: TEDS-M results.* Springer.

Borromeo Ferri, R. (2018). *Learning how to teach mathematical modeling in school and teacher education*. Springer International Publishing.

Borromeo Ferri, R., & Blum, W. (2009). Mathematical modelling in teacher education – Experiences from a modelling seminar. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), *European Society for Research in Mathematics Education – Proceedings of CERME6*, pp. 2046–2055.

Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). *Uses of technology in lower secondary mathematics education: A concise topical survey*. Springer International Publishing.

References II

Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). *Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV Project*. Springer US.

Wess, R., Klock, H., Siller, H.-S., & Greefrath, G. (2021a). Measuring professional competence for the teaching of mathematical modelling. In F. K. S. Leung, G. A. Stillman, G. Kaiser, & K. L. Wong (Eds.), *Mathematical modelling education in east and west. International perspectives on the teaching and learning of mathematical modelling* (pp. 249–260). Springer International Publishing.

Wess, R., Klock, H., Siller, H.-S., & Greefrath, G. (2021b). *Measuring professional competence for the teaching of mathematical modelling: A test instrument*. Springer International Publishing.

List of Figures

Figure 1 *Microscope*: AdrianoKF/pixabay.com

Figure 2 *Question mark*: IO-Images/pixabay.com