

The impact of using multimedia technology in learning conceptual electrical knowledge

Comparing a traditional approach with the use of an AR-application and a simulation regarding their capability to support learning in a student laboratory

Florian Frank, Christoph Stolzenberger and Thomas Trefzger (Chair of Physics and its Didactics, University of Würzburg)

04.07.2023 | 3.00 pm | Presentation at GIREP-EPEC conference 2023 | Košice

GEFÖRDERT VOM

Learning about electricity with multimedia technology

Theoretical Background

Starting point of the project

Misconceptions regarding basic electrical concepts are prevalent and have been found...

- → after the introductory lessons regarding simple circuits.
 (Burde, 2018; Ivanjek et al., 2021)
- → after finishing early secondary school. (Müller et al., 2015)
- → among first-semester students of physics. (Fromme, 2018)

Assumption: The complexity of the content presented is high and cognitively challenges students (too much). (Burde et al., 2020)

Cognitive Theory of Multimedia Learning (Mayer, 2014)

Approach: Reducing the cognitive challenge using...

- → Spatial and Temporal Contiguity Principle (Mayer et al., 2014)
- → Segmenting Principle and Coherence Principle (Mayer et al., 2010)

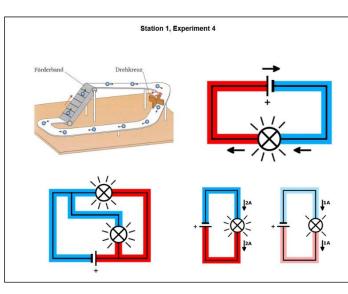
Two thematic blocks in learning about electricity could benefit:

- \rightarrow Learning about and with models (Burde et al., 2020)
- → Data acquisition (Kapp et al., 2021)

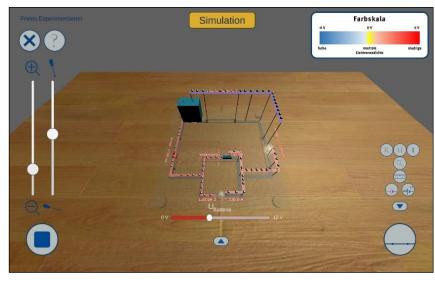
CoTeach

Learning about electricity with multimedia technology

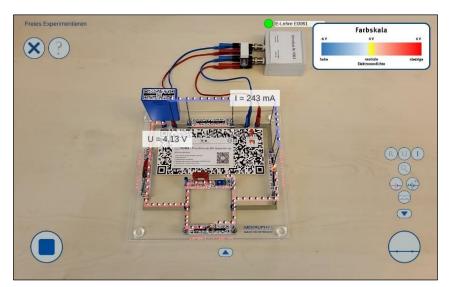
Research Interest and Design


Research Interest 1. What impact does digital support for model presentation have on learning (in		Measuring via multimeters	Measuring via AR
 terms of Conceptual Knowledge Gain and Time on Task) and cognitive load? What impact does digital support for data acquisition have on learning (in terms of Conceptual Knowledge Gain and Time on Task) and cognitive load? 	Visualizations via infographics	IG & MM	
Gathered Data and used Test Instruments → Conceptual Knowledge Test (Ivanjek et al., 2021), Time on Task, Cognitive Load	Visualizations via simulation	SIM & MM	
Scale (Klepsch et al., 2017)	Visualizations	AR & MM	AR & AR

 \rightarrow Level of academic achievement (in form of school grades), Affinity for technology (Karrer et al., 2009), Spatial Visualization Ability (Heller et al., 2000) via AR


Learning about electricity with multimedia technology

Differences between the groups


→ Infographics

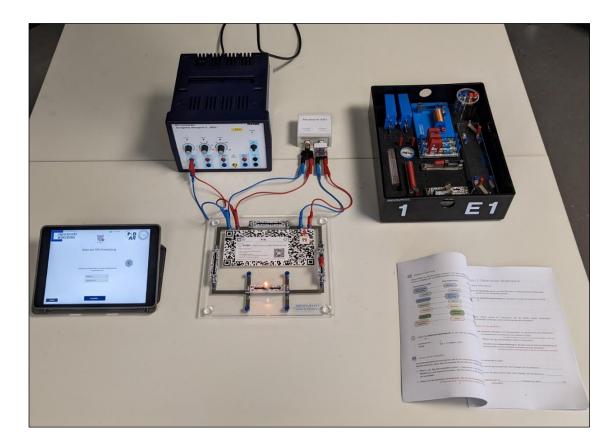
 \rightarrow Simulation

 \rightarrow AR-application

04.07.2023

4

Learning about electricity with multimedia technology


Context data on the intervention

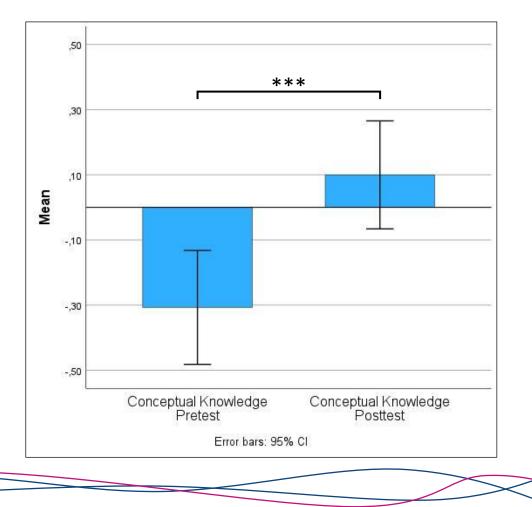
Context of the intervention

- $\rightarrow\,$ Used in a student laboratory situated at University of Würzburg
- \rightarrow Survey period: December 2022 July 2023
- → Participants: 8 classes from secondary schools (in total 196 students), after completion of the introductory lessons on simple circuits

About the student laboratory

→ Four lessons: "Electric Current and Voltage", "Electric Resistance",
 "Parallel Circuits" and "Serial Circuits"

Learning about electricity with multimedia technology

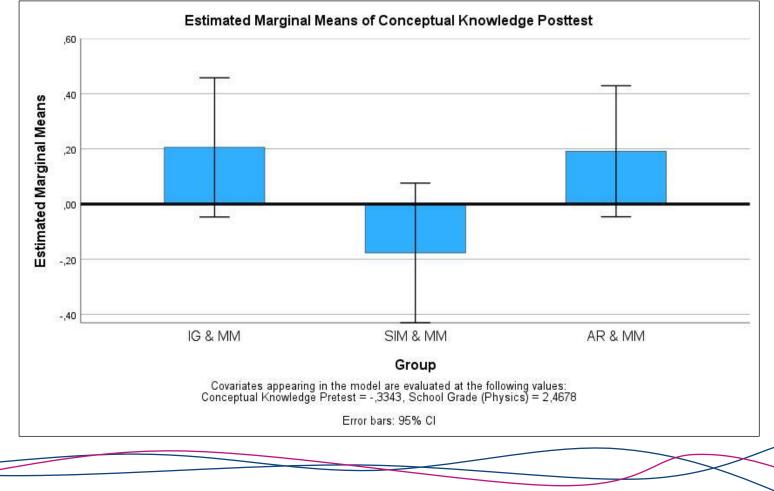

Preliminary Results regarding Conceptual Knowledge

Preparing the Conceptual Knowledge Data

- → Test developed for IRT (Item Response Theory (Bond et al., 2021)) Analysis
- → Result: ability score for every participant for the Pre- and Post-Test (Range: -4.4 to 3.57)

Examining the full sample

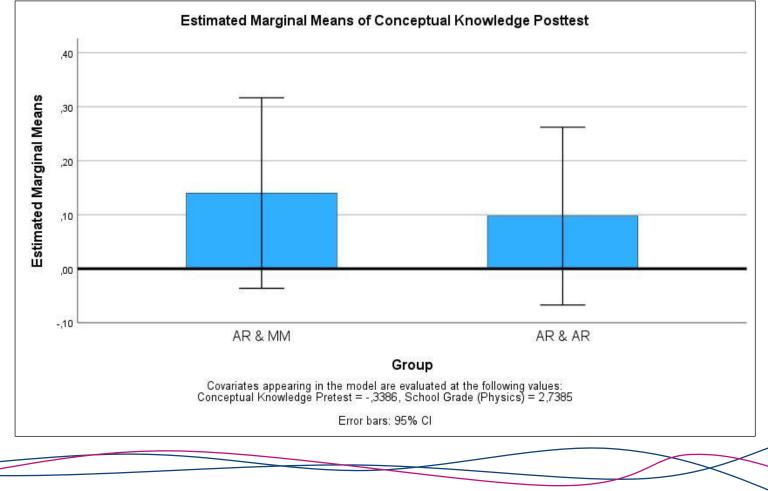
→ A paired samples t-test showed a significant difference between Pre- (M = -.307, SD = 1.146) and Post-Test-Scores (M = .100, SD = 1.088); t(167) = -6.336, p < .001.


Learning about electricity with multimedia technology

Preliminary Results regarding Differences caused by model presentation

Examining the model presentation

- → analysed using an ANCOVA (Post-Test-Score as dependant variable, group as fixed variable, with Pre-Test-Score and level of academic achievement as covariates)
- → With a p-value of .057, the ANCOVA revealed no significant effect of model presentation on Post-Test-Scores after controlling for the effect of the covariates, F(2,108) = 2.939, p = .057, partial η^2 = .052.

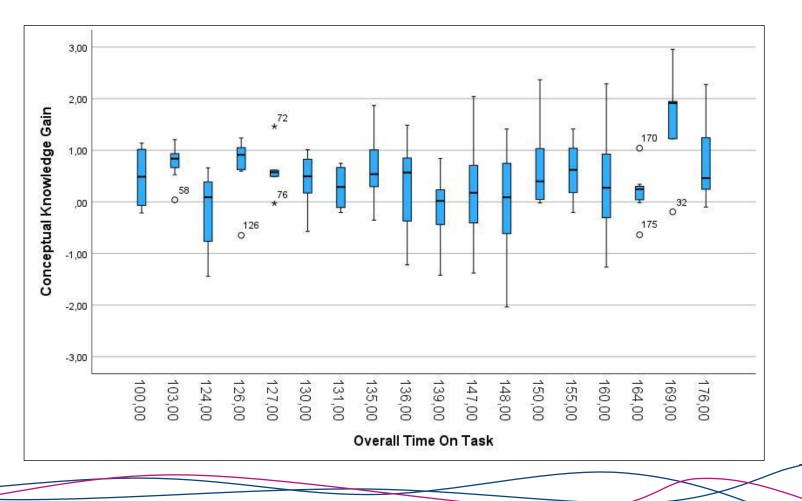

Learning about electricity with multimedia technology

CoTeach

Preliminary Results regarding Differences caused by data acquisition

Examining the data acquisition

- → analysed using an ANCOVA (Post-Test-Score as dependant variable, group as fixed variable, with Pre-Test-Score and level of academic achievement as covariates)
- → With a p-value of .727, the ANCOVA revealed no significant effect of data acquisition on Post-Test-Scores after controlling for the effect of the covariates, F(1,84) = 0.123, p = .727, partial η^2 = .001.



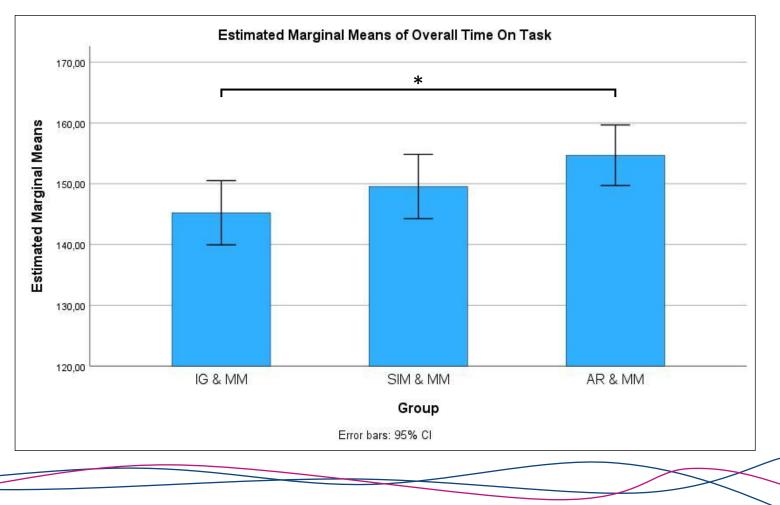
Learning about electricity with multimedia technology

Preliminary Results regarding Time on Task and Post-Test-Scores

Examining the full sample

- $\rightarrow\,$ analysed using multiple linear regression
- → The regression was statistically significant $(R^2 = 0.55, F(3, 156) = 63.46, p < .001).$
- → Level of academic achievement (β = -.176, p = .002) and the Pre-Test-Score (β = .668, p < .001) significantly predict Post-Test-Score.
- → Time on Task does not significantly predict Post-Test-Score (β = .043, p = .424).

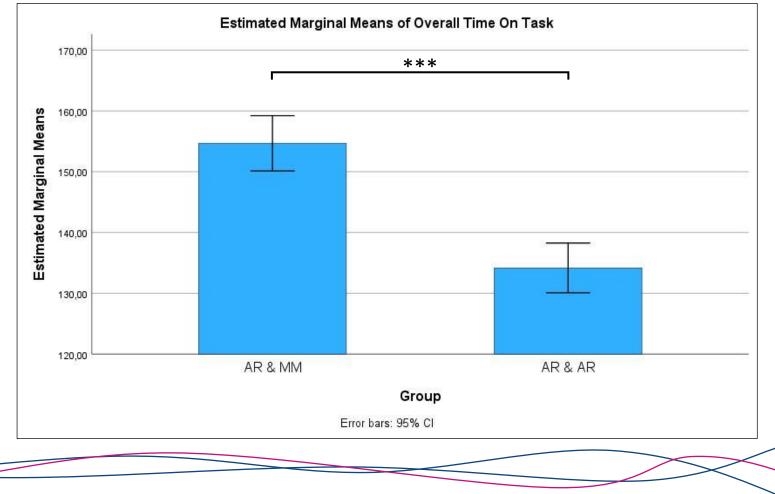
CoTeach


Learning about electricity with multimedia technology

Preliminary Results regarding differences caused by model presentation

Examining the model presentation

- \rightarrow analysed using an ANOVA
- → There was a significant effect of model presentation on Overall Time on Task, F(2,125) = 3.344, p = .038, partial $\eta^2 = .051$.
- → Post-Hoc-Tests revealed a significant increase in Mean Time on Task caused by using the AR-application as compared to using infographics, p = .033.

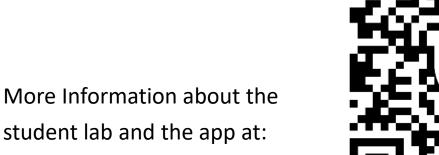

Learning about electricity with multimedia technology

CoTeach

Preliminary Results regarding differences caused by data acquisition

Examining the data acquisition

- \rightarrow analysed using an ANOVA
- → There was a significant effect of data acquisition on Overall Time on Task, F(1,101) = 44.261, p < .001, partial $\eta^2 = .305$.


Learning about electricity with multimedia technology Summary

Summary of preliminary results

- → Significant Increase in Conceptual Knowledge caused by the intervention
- → No interaction between Conceptual Knowledge Development and Time on Task
- → Significant Increase in Time on Task when using AR for model presentation
- → Significant Decrease in Time on Task when using AR for data acquisition

Thank you for your attention!

https://go.uniwue.de/puma-s

Learning about electricity with multimedia technology

Learning about electricity with multimedia technology

Literature cited in the presentation

Literature:

- (1) Burde, Jan-Philipp (2018): Konzeption und Evaluation eines Unterrichtskonzepts zu einfachen Stromkreisen auf Basis des Elektronengasmodells. In: Studien zum Physik- und Chemielernen. Logos-Verlag, Berlin.
- (2) Ivanjek, Lana; Morris, Louisa; Schubatzky, Thomas; Hopf, Martin; Burde, Jan-Philipp; Haagen-Schützenhofer, Claudia; Dopatka, Liza; Spatz, Verena; Wilhelm, Thomas (2021): Development of a two-tier instrument on simple electric circuits. In: Phys. Rev. Phys. Educ. Res. 17, 020123.
- (3) Müller, Svetlana; Burde, Jan-Philipp; Wilhelm, Thomas (2015): Vergleich von Schülervorstellungen zur Elektrizitätslehre in Hessen und Weißrussland. In: PhyDidB, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung, 1 (2015).
- (4) Fromme, Bärbel (2018): Fehlvorstellungen von Studienanfängern Was bleibt vom Physikunterricht der Sekundarstufe I? In: PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung, 1 (2018), S. 205-215.
- (5) Burde, Jan-Philipp; Wilhelm, Thomas (2020): Teaching electric circuits with a focus on potential differences. In: Phys. Rev. Phys. Educ. Res. 16, 020153.
- (6) Mayer, Richard (2014): Cognitive Theory of Multimedia Learning. In (Mayer, Richard (Hrsg.)): The Cambridge Handbook of Multimedia Learning, Second Edition, S. 43-71. Cambridge University Press, New York.
- (7) Mayer, Richard; Fiorella, Logan (2014): Principles for Reducing Extraneous Processing in Multimedia Learning: Coherence, Signaling, Redundancy, Spatial Contiguity, and Temporal Contiguity Principles. In (Mayer, Richard (Hrsg.)): The Cambridge Handbook of Multimedia Learning, Second Edition, S. 279-315. Cambridge University Press, New York.
- (8) Mayer, Richard; Moreno, Roxana (2010): Techniques That Reduce Extraneous Cognitive Load and Manage Intrinsic Cognitive Load during Multimedia Learning. In (Plass, Jan; Moreno, Roxana; Brünken, Roland (Hrsg.)): Cognitive Load Theory, S. 131-152. Cambridge University Press, New York.
- (9) Kapp, Sebastian; Lauer, Frederik; Beil, Fabian; Rheinländer, Carl; Wehn, Nobert; Kuhn, Jochen (2021): Smart Sensors for Augmented Electrical Experiments. In: Sensors, 22(1), 256.
- (10) Klepsch, Melina; Schmitz, Florian; Seufert, Tina (2017): Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load. In: Front. Psychol. 8:1997.
- (11) Karrer, Katja; Glaser, Charlotte; Clemens, Caroline; Bruder, Carmen (2009): Technikaffinität erfassen der Fragebogen TA-EG. In (Lichtenstein, Antje; Stößel, Christian; Clemens, Caroline (Hrsg.)): Der Mensch im Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch-Maschine-Systeme (ZMMS Spektrum, Reihe 22, Nr. 29, S. 196 201). VDI Verlag GmbH, Düsseldorf.
- (12) Heller, Kurt; Perleth, Christoph (2000): Kognitiver Fähigkeitstest für 4.-12. Klassen, Revision (KFT 4-12+ R). Hogrefe, Göttingen.
- (13) Bond, Trevor; Yan, Zi; Heene, Moritz (2021): Applying the Rasch Model Fundamental Measurement in the Human Sciences, Fourth Edition. Routledge, New York.