

Theory-related pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools – empirical analysis of the promotion of pre-service teachers

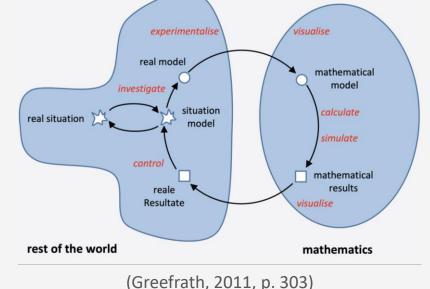
Jascha Quarder Prof Dr. Gilbert Greefrath (University of Münster) Sebastian Gerber Prof. Dr. Hans-Stefan Siller (University of Würzburg)

SPONSORED BY THE

Federal Ministry of Education and Research

Introduction

- Digital tools can support students' simulation and modelling processes in many ways. (Geiger, 2011; Greefrath & Siller, 2017)
- In order to use this potential profitably in the classroom, teachers need specific professional competences. (Baumert & Kunter, 2013; Blömeke et al., 2015; Drijvers et al., 2016)
- The theory-related pedagogical content knowledge is one cognitive competence dimension of the necessary professional competence for teaching simulations and mathematical modelling with digital tools. (Gerber et al., 2022)



Theory & Research Question

- Theory-related pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools
 - declarative meta-knowledge
 - background knowledge about aims, perspectives and potentials of using digital tools in reality-based lessons.

(Gerber et al., 2022) (cf. also Borromeo Ferri, 2018)

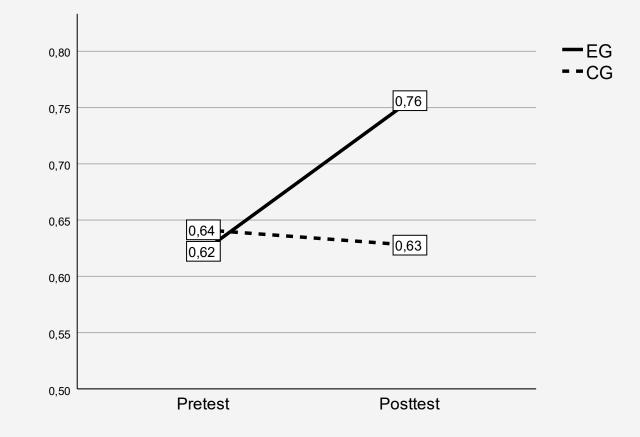
• Declarative meta-knowledge also includes modelling cycles that take the use of digital tools into account.

RQ: To what extent can the **theory-related pedagogical content knowledge** for teaching simulations and mathematical modelling with digital tools of pre-service mathematics teacher be **developed by a university mathematics education course** with practical elements conceived by us?

Research Design & Test Instrument

- quasi-experimental intervention study with an experimental group (EG) and a control group (CG)
- data from 146 pre-service mathematics teachers at University of Münster and University of Würzburg

pretest	EG: <i>N</i> = 80	mathematics education course: specific promotion of theory-related pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools
		preparation phase practical phase reflection phase (six sessions) (two sessions) (four sessions)
	CG: <i>N</i> = 66	other or no education courses: no specific promotion of theory-related pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools


- 9 items in a multiple-choice answer format, items are evaluated dichotomously
- example item: (see Gerber et al., 2022, p. 1054)

The use of digital tools		
requires a standardized approach to mathematical modelling.		
in mathematical modelling is only possible in calculation.		
makes it possible to work on mathematical models with complex function terms.	×	
is not helpful in understanding the factual context.		

Results

- Development of the knowledge differs significantly between the groups, t(144) = 4.238, p = .001, d = .71
- Knowledge in the experimental group: significantly increasing, t(79) = 5.954, p = .001, d = .67
- Knowledge in the control group: not significant decreasing, t(65) = -.506, p = .614

Discussion

RQ: To what extent can the **theory-related pedagogical content knowledge** for teaching simulations and mathematical modelling with digital tools of pre-service mathematics teacher be **developed by a university mathematics education course** with practical elements conceived by us?

- The effectiveness of the presented course, which served as an intervention, could be confirmed.
- This suggests that the course concept with its three-part division (preparation, practice and reflection phase) and practical school elements was chosen sensibly.
- At the same time, it has not yet been determined which elements of the course design were (particularly) responsible for the individual knowledge gains, as the intervention was only investigated as a whole.

References I

Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers' professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (eds.), *Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project* (p. 25–48). Springer US.

Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond dichotomies: Competence viewed as a continuum. *Zeitschrift für Psychologie*, *223*(1), 3–13. <u>https://doi.org/10.1027/2151-2604/a000194</u>

Borromeo Ferri, R. (2018). *Learning how to teach mathematical modeling in school and teacher education*. Springer International Publishing.

Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education: A concise topical survey. Springer International Publishing.

References II

Geiger, V. (2011). Factors affecting teachers' adoption of innovative practices with technology and mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (eds.), *Trends in Teaching and Learning of Mathematical Modelling* (p. 305–314). Springer Netherlands.

Gerber, S., Quarder, J., Greefrath, G., & Siller, H.-S. (2022). Pre-service teachers' pedagogical content knowledge for teaching simulations and mathematical modelling with digital tools. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (eds.), *Proceedings of the Twelfth Congress of the European Research Society in Mathematics Education (CERME12)* (p. 1051–1058). ERME / Free University of Bozen-Bolzano.

Greefrath, G. (2011). Using technologies. New possibilities of teaching and learning modelling – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (eds.), *Trends in Teaching and Learning of Mathematical Modelling: ICTMA14* (p. 301–304). Springer.

References III

Greefrath, G., & Siller, H.-S. (2017). Modelling and simulation with the help of digital tools. In G. A. Stillman, W. Blum, & G. Kaiser (eds.), *Mathematical Modelling and Applications* (p. 529–539). Springer International Publishing.