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Preface

The analysis of real data by means of statistical methods with the aid
of a software package common in industry and administration usually
is not an integral part of mathematics studies, but it will certainly be
part of a future professional work.
The practical need for an investigation of time series data is exempli-
fied by the following plot, which displays the yearly sunspot numbers
between 1749 and 1924. These data are also known as the Wolf or
Wölfer (a student of Wolf) Data. For a discussion of these data and
further literature we refer to Wei and Reilly (1989), Example 6.2.5.

Plot 1: Sunspot data

The present book links up elements from time series analysis with a se-
lection of statistical procedures used in general practice including the
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statistical software package SAS (Statistical Analysis System). Conse-
quently this book addresses students of statistics as well as students of
other branches such as economics, demography and engineering, where
lectures on statistics belong to their academic training. But it is also
intended for the practician who, beyond the use of statistical tools, is
interested in their mathematical background. Numerous problems il-
lustrate the applicability of the presented statistical procedures, where
SAS gives the solutions. The programs used are explicitly listed and
explained. No previous experience is expected neither in SAS nor in a
special computer system so that a short training period is guaranteed.
This book is meant for a two semester course (lecture, seminar or
practical training) where the first three chapters can be dealt with
in the first semester. They provide the principal components of the
analysis of a time series in the time domain. Chapters 4, 5 and 6
deal with its analysis in the frequency domain and can be worked
through in the second term. In order to understand the mathematical
background some terms are useful such as convergence in distribution,
stochastic convergence, maximum likelihood estimator as well as a
basic knowledge of the test theory, so that work on the book can start
after an introductory lecture on stochastics. Each chapter includes
exercises. An exhaustive treatment is recommended. Chapter 7 (case
study) deals with a practical case and demonstrates the presented
methods. It is possible to use this chapter independent in a seminar
or practical training course, if the concepts of time series analysis are
already well understood.
Due to the vast field a selection of the subjects was necessary. Chap-
ter 1 contains elements of an exploratory time series analysis, in-
cluding the fit of models (logistic, Mitscherlich, Gompertz curve)
to a series of data, linear filters for seasonal and trend adjustments
(difference filters, Census X–11 Program) and exponential filters for
monitoring a system. Autocovariances and autocorrelations as well
as variance stabilizing techniques (Box–Cox transformations) are in-
troduced. Chapter 2 provides an account of mathematical models
of stationary sequences of random variables (white noise, moving
averages, autoregressive processes, ARIMA models, cointegrated se-
quences, ARCH- and GARCH-processes) together with their math-
ematical background (existence of stationary processes, covariance
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generating function, inverse and causal filters, stationarity condition,
Yule–Walker equations, partial autocorrelation). The Box–Jenkins
program for the specification of ARMA-models is discussed in detail
(AIC, BIC and HQ information criterion). Gaussian processes and
maximum likelihod estimation in Gaussian models are introduced as
well as least squares estimators as a nonparametric alternative. The
diagnostic check includes the Box–Ljung test. Many models of time
series can be embedded in state-space models, which are introduced in
Chapter 3. The Kalman filter as a unified prediction technique closes
the analysis of a time series in the time domain. The analysis of a
series of data in the frequency domain starts in Chapter 4 (harmonic
waves, Fourier frequencies, periodogram, Fourier transform and its
inverse). The proof of the fact that the periodogram is the Fourier
transform of the empirical autocovariance function is given. This links
the analysis in the time domain with the analysis in the frequency do-
main. Chapter 5 gives an account of the analysis of the spectrum of
the stationary process (spectral distribution function, spectral den-
sity, Herglotz’s theorem). The effects of a linear filter are studied
(transfer and power transfer function, low pass and high pass filters,
filter design) and the spectral densities of ARMA-processes are com-
puted. Some basic elements of a statistical analysis of a series of data
in the frequency domain are provided in Chapter 6. The problem of
testing for a white noise is dealt with (Fisher’s κ-statistic, Bartlett–
Kolmogorov–Smirnov test) together with the estimation of the spec-
tral density (periodogram, discrete spectral average estimator, kernel
estimator, confidence intervals). Chapter 7 deals with the practical
application of the Box–Jenkins Program to a real dataset consisting of
7300 discharge measurements from the Donau river at Donauwoerth.
For the purpose of studying, the data have been kindly made avail-
able to the University of Würzburg. A special thank is dedicated to
Rudolf Neusiedl. Additionally, the asymptotic normality of the partial
and general autocorrelation estimators is proven in this chapter and
some topics discussed earlier are further elaborated (order selection,
diagnostic check, forecasting).
This book is consecutively subdivided in a statistical part and a SAS-
specific part. For better clearness the SAS-specific part, including
the diagrams generated with SAS, is between two horizontal bars,
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separating it from the rest of the text.

1 /* This is a sample comment. */
2 /* The first comment in each program will be its name. */
3

4 Program code will be set in typewriter-font. SAS keywords like DATA or
5 PROC will be set in bold.
6

7 Also all SAS keywords are written in capital letters. This is not
8 necessary as SAS code is not case sensitive, but it makes it easier to
9 read the code.

10

11 Extra-long lines will be broken into smaller lines with continuation
↪→marked by an arrow and indentation.

12 (Also, the line-number is missing in this case.)

In this area, you will find a step-by-step expla-
nation of the above program. The keywords
will be set in typewriter-font. Please note

that SAS cannot be explained as a whole this
way. Only the actually used commands will be
mentioned.
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Chapter

1Elements of Exploratory
Time Series Analysis

A time series is a sequence of observations that are arranged according
to the time of their outcome. The annual crop yield of sugar-beets and
their price per ton for example is recorded in agriculture. The newspa-
pers’ business sections report daily stock prices, weekly interest rates,
monthly rates of unemployment and annual turnovers. Meteorology
records hourly wind speeds, daily maximum and minimum tempera-
tures and annual rainfall. Geophysics is continuously observing the
shaking or trembling of the earth in order to predict possibly impend-
ing earthquakes. An electroencephalogram traces brain waves made
by an electroencephalograph in order to detect a cerebral disease, an
electrocardiogram traces heart waves. The social sciences survey an-
nual death and birth rates, the number of accidents in the home and
various forms of criminal activities. Parameters in a manufacturing
process are permanently monitored in order to carry out an on-line
inspection in quality assurance.
There are, obviously, numerous reasons to record and to analyze the
data of a time series. Among these is the wish to gain a better under-
standing of the data generating mechanism, the prediction of future
values or the optimal control of a system. The characteristic property
of a time series is the fact that the data are not generated indepen-
dently, their dispersion varies in time, they are often governed by a
trend and they have cyclic components. Statistical procedures that
suppose independent and identically distributed data are, therefore,
excluded from the analysis of time series. This requires proper meth-
ods that are summarized under time series analysis.
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1.1 The Additive Model for a Time Series
The additive model for a given time series y1, . . . , yn is the assump-
tion that these data are realizations of random variables Yt that are
themselves sums of four components

Yt = Tt + Zt + St +Rt, t = 1, . . . , n. (1.1)

where Tt is a (monotone) function of t, called trend , and Zt reflects
some nonrandom long term cyclic influence. Think of the famous
business cycle usually consisting of recession, recovery, growth, and
decline. St describes some nonrandom short term cyclic influence like
a seasonal component whereas Rt is a random variable grasping all
the deviations from the ideal non-stochastic model yt = Tt + Zt + St.
The variables Tt and Zt are often summarized as

Gt = Tt + Zt, (1.2)

describing the long term behavior of the time series. We suppose in
the following that the expectation E(Rt) of the error variable exists
and equals zero, reflecting the assumption that the random deviations
above or below the nonrandom model balance each other on the av-
erage. Note that E(Rt) = 0 can always be achieved by appropriately
modifying one or more of the nonrandom components.

Example 1.1.1. (Unemployed1 Data). The following data yt, t =
1, . . . , 51, are the monthly numbers of unemployed workers in the
building trade in Germany from July 1975 to September 1979.

MONTH T UNEMPLYD

July 1 60572
August 2 52461
September 3 47357
October 4 48320
November 5 60219
December 6 84418
January 7 119916
February 8 124350
March 9 87309
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April 10 57035
May 11 39903
June 12 34053
July 13 29905
August 14 28068
September 15 26634
October 16 29259
November 17 38942
December 18 65036
January 19 110728
February 20 108931
March 21 71517
April 22 54428
May 23 42911
June 24 37123
July 25 33044
August 26 30755
September 27 28742
October 28 31968
November 29 41427
December 30 63685
January 31 99189
February 32 104240
March 33 75304
April 34 43622
May 35 33990
June 36 26819
July 37 25291
August 38 24538
September 39 22685
October 40 23945
November 41 28245
December 42 47017
January 43 90920
February 44 89340
March 45 47792
April 46 28448
May 47 19139
June 48 16728
July 49 16523
August 50 16622
September 51 15499

Listing 1.1.1: Unemployed1 Data.

1 /* unemployed1_listing.sas */
2 TITLE1 ’Listing’;
3 TITLE2 ’Unemployed1 Data’;
4

5 /* Read in the data (Data-step) */
6 DATA data1;
7 INFILE ’c:\data\unemployed1.txt’;
8 INPUT month $ t unemplyd;
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10 /* Print the data (Proc-step) */
11 PROC PRINT DATA = data1 NOOBS;
12 RUN;QUIT;

This program consists of two main parts, a
DATA and a PROC step.
The DATA step started with the DATA statement
creates a temporary dataset named data1.
The purpose of INFILE is to link the DATA step
to a raw dataset outside the program. The path-
name of this dataset depends on the operat-
ing system; we will use the syntax of MS-DOS,
which is most commonly known. INPUT tells
SAS how to read the data. Three variables are
defined here, where the first one contains char-
acter values. This is determined by the $ sign
behind the variable name. For each variable
one value per line is read from the source into
the computer’s memory.
The statement PROC procedurename
DATA=filename; invokes a procedure that
is linked to the data from filename. Without
the option DATA=filename the most recently
created file is used.
The PRINT procedure lists the data; it comes
with numerous options that allow control of the

variables to be printed out, ’dress up’ of the dis-
play etc. The SAS internal observation number
(OBS) is printed by default, NOOBS suppresses
the column of observation numbers on each
line of output. An optional VAR statement deter-
mines the order (from left to right) in which vari-
ables are displayed. If not specified (like here),
all variables in the data set will be printed in the
order they were defined to SAS. Entering RUN;
at any point of the program tells SAS that a unit
of work (DATA step or PROC) ended. SAS then
stops reading the program and begins to exe-
cute the unit. The QUIT; statement at the end
terminates the processing of SAS.
A line starting with an asterisk * and ending
with a semicolon ; is ignored. These comment
statements may occur at any point of the pro-
gram except within raw data or another state-
ment.
The TITLE statement generates a title. Its
printing is actually suppressed here and in the
following.

The following plot of the Unemployed1 Data shows a seasonal compo-
nent and a downward trend. The period from July 1975 to September
1979 might be too short to indicate a possibly underlying long term
business cycle.
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Plot 1.1.2: Unemployed1 Data.

1 /* unemployed1_plot.sas */
2 TITLE1 ’Plot’;
3 TITLE2 ’Unemployed1 Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\unemployed1.txt’;
8 INPUT month $ t unemplyd;
9

10 /* Graphical Options */
11 AXIS1 LABEL=(ANGLE=90 ’unemployed’);
12 AXIS2 LABEL=(’t’);
13 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.4 W=1;
14

15 /* Plot the data */
16 PROC GPLOT DATA=data1;
17 PLOT unemplyd*t / VAXIS=AXIS1 HAXIS=AXIS2;
18 RUN; QUIT;

Variables can be plotted by using the GPLOT
procedure, where the graphical output is con-
trolled by numerous options.
The AXIS statements with the LABEL options
control labelling of the vertical and horizontal
axes. ANGLE=90 causes a rotation of the label
of 90◦ so that it parallels the (vertical) axis in
this example.
The SYMBOL statement defines the manner

in which the data are displayed. V=DOT
C=GREEN I=JOIN H=0.4 W=1 tell SAS to
plot green dots of height 0.4 and to join
them with a line of width 1. The PLOT
statement in the GPLOT procedure is of
the form PLOT y-variable*x-variable /
options;, where the options here define the
horizontal and the vertical axes.
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Models with a Nonlinear Trend
In the additive model Yt = Tt+Rt, where the nonstochastic component
is only the trend Tt reflecting the growth of a system, and assuming
E(Rt) = 0, we have

E(Yt) = Tt =: f(t).

A common assumption is that the function f depends on several (un-
known) parameters β1, . . . , βp, i.e.,

f(t) = f(t; β1, . . . , βp). (1.3)

However, the type of the function f is known. The unknown param-
eters β1, . . . ,βp are then to be estimated from the set of realizations
yt of the random variables Yt. A common approach is a least squares
estimate β̂1, . . . , β̂p satisfying∑

t

(
yt − f(t; β̂1, . . . , β̂p)

)2
= min

β1,...,βp

∑
t

(
yt − f(t; β1, . . . , βp)

)2
, (1.4)

whose computation, if it exists at all, is a numerical problem. The
value ŷt := f(t; β̂1, . . . , β̂p) can serve as a prediction of a future yt.
The observed differences yt − ŷt are called residuals . They contain
information about the goodness of the fit of our model to the data.
In the following we list several popular examples of trend functions.

The Logistic Function
The function

flog(t) := flog(t; β1, β2, β3) :=
β3

1 + β2 exp(−β1t)
, t ∈ R, (1.5)

with β1, β2, β3 ∈ R \ {0} is the widely used logistic function.
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Plot 1.1.3: The logistic function flog with different values of β1, β2, β3

1 /* logistic.sas */
2 TITLE1 ’Plots of the Logistic Function’;
3

4 /* Generate the data for different logistic functions */
5 DATA data1;
6 beta3=1;
7 DO beta1= 0.5, 1;
8 DO beta2=0.1, 1;
9 DO t=-10 TO 10 BY 0.5;

10 s=COMPRESS(’(’ || beta1 || ’,’ || beta2 || ’,’ || beta3 || ’)’);
11 f_log=beta3/(1+beta2*EXP(-beta1*t));
12 OUTPUT;
13 END;
14 END;
15 END;
16

17 /* Graphical Options */
18 SYMBOL1 C=GREEN V=NONE I=JOIN L=1;
19 SYMBOL2 C=GREEN V=NONE I=JOIN L=2;
20 SYMBOL3 C=GREEN V=NONE I=JOIN L=3;
21 SYMBOL4 C=GREEN V=NONE I=JOIN L=33;
22 AXIS1 LABEL=(H=2 ’f’ H=1 ’log’ H=2 ’(t)’);
23 AXIS2 LABEL=(’t’);
24 LEGEND1 LABEL=(F=CGREEK H=2 ’(b’ H=1 ’1’ H=2 ’, b’ H=1 ’2’ H=2 ’,b’ H

↪→=1 ’3’ H=2 ’)=’);
25

26 /* Plot the functions */
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27 PROC GPLOT DATA=data1;
28 PLOT f_log*t=s / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;
29 RUN; QUIT;

A function is plotted by computing its values at
numerous grid points and then joining them.
The computation is done in the DATA step,
where the data file data1 is generated. It con-
tains the values of f log, computed at the grid
t = −10,−9.5, . . . , 10 and indexed by the vec-
tor s of the different choices of parameters.
This is done by nested DO loops. The opera-
tor || merges two strings and COMPRESS re-
moves the empty space in the string. OUTPUT
then stores the values of interest of f log, t
and s (and the other variables) in the data set
data1.

The four functions are plotted by the GPLOT
procedure by adding =s in the PLOT statement.
This also automatically generates a legend,
which is customized by the LEGEND1 state-
ment. Here the label is modified by using a
greek font (F=CGREEK) and generating smaller
letters of height 1 for the indices, while assum-
ing a normal height of 2 (H=1 and H=2). The
last feature is also used in the axis statement.
For each value of s SAS takes a new SYMBOL
statement. They generate lines of different line
types (L=1, 2, 3, 33).

We obviously have limt→∞ flog(t) = β3, if β1 > 0. The value β3 often
resembles the maximum impregnation or growth of a system. Note
that

1

flog(t)
=

1 + β2 exp(−β1t)

β3

=
1− exp(−β1)

β3
+ exp(−β1)

1 + β2 exp(−β1(t− 1))

β3

=
1− exp(−β1)

β3
+ exp(−β1)

1

flog(t− 1)

= a+
b

flog(t− 1)
. (1.6)

This means that there is a linear relationship among 1/flog(t). This
can serve as a basis for estimating the parameters β1, β2, β3 by an
appropriate linear least squares approach, see Exercises 1.2 and 1.3.
In the following example we fit the logistic trend model (1.5) to the
population growth of the area of North Rhine-Westphalia (NRW),
which is a federal state of Germany.

Example 1.1.2. (Population1 Data). Table 1.1.1 shows the popu-
lation sizes yt in millions of the area of North-Rhine-Westphalia in
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5 years steps from 1935 to 1980 as well as their predicted values ŷt,
obtained from a least squares estimation as described in (1.4) for a
logistic model.

Year t Population sizes yt Predicted values ŷt
(in millions) (in millions)

1935 1 11.772 10.930
1940 2 12.059 11.827
1945 3 11.200 12.709
1950 4 12.926 13.565
1955 5 14.442 14.384
1960 6 15.694 15.158
1965 7 16.661 15.881
1970 8 16.914 16.548
1975 9 17.176 17.158
1980 10 17.044 17.710

Table 1.1.1: Population1 Data

As a prediction of the population size at time t we obtain in the logistic
model

ŷt :=
β̂3

1 + β̂2 exp(−β̂1t)

=
21.5016

1 + 1.1436 exp(−0.1675 t)

with the estimated saturation size β̂3 = 21.5016. The following plot
shows the data and the fitted logistic curve.
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Plot 1.1.4: NRW population sizes and fitted logistic function.

1 /* population1.sas */
2 TITLE1 ’Population sizes and logistic fit’;
3 TITLE2 ’Population1 Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\population1.txt’;
8 INPUT year t pop;
9

10 /* Compute parameters for fitted logistic function */
11 PROC NLIN DATA=data1 OUTEST=estimate;
12 MODEL pop=beta3/(1+beta2*EXP(-beta1*t));
13 PARAMETERS beta1=1 beta2=1 beta3=20;
14 RUN;
15

16 /* Generate fitted logistic function */
17 DATA data2;
18 SET estimate(WHERE=(_TYPE_=’FINAL’));
19 DO t1=0 TO 11 BY 0.2;
20 f_log=beta3/(1+beta2*EXP(-beta1*t1));
21 OUTPUT;
22 END;
23

24 /* Merge data sets */
25 DATA data3;
26 MERGE data1 data2;
27
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28 /* Graphical options */
29 AXIS1 LABEL=(ANGLE=90 ’population in millions’);
30 AXIS2 LABEL=(’t’);
31 SYMBOL1 V=DOT C=GREEN I=NONE;
32 SYMBOL2 V=NONE C=GREEN I=JOIN W=1;
33

34 /* Plot data with fitted function */
35 PROC GPLOT DATA=data3;
36 PLOT pop*t=1 f_log*t1=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;
37 RUN; QUIT;

The procedure NLIN fits nonlinear regression
models by least squares. The OUTEST option
names the data set to contain the parameter
estimates produced by NLIN. The MODEL state-
ment defines the prediction equation by declar-
ing the dependent variable and defining an ex-
pression that evaluates predicted values. A
PARAMETERS statement must follow the PROC
NLIN statement. Each parameter=value ex-
pression specifies the starting values of the pa-

rameter. Using the final estimates of PROC
NLIN by the SET statement in combination with
the WHERE data set option, the second data
step generates the fitted logistic function val-
ues. The options in the GPLOT statement cause
the data points and the predicted function to be
shown in one plot, after they were stored to-
gether in a new data set data3 merging data1
and data2 with the MERGE statement.

The Mitscherlich Function
The Mitscherlich function is typically used for modelling the long
term growth of a system:

fM(t) := fM(t; β1, β2, β3) := β1 + β2 exp(β3t), t ≥ 0, (1.7)

where β1, β2 ∈ R and β3 < 0. Since β3 is negative we have the
asymptotic behavior limt→∞ fM(t) = β1 and thus the parameter β1 is
the saturation value of the system. The (initial) value of the system
at the time t = 0 is fM(0) = β1 + β2.

The Gompertz Curve
A further quite common function for modelling the increase or de-
crease of a system is the Gompertz curve

fG(t) := fG(t; β1, β2, β3) := exp(β1 + β2β
t
3), t ≥ 0, (1.8)

where β1, β2 ∈ R and β3 ∈ (0, 1).
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Plot 1.1.5: Gompertz curves with different parameters.

1 /* gompertz.sas */
2 TITLE1 ’Gompertz curves’;
3

4 /* Generate the data for different Gompertz functions */
5 DATA data1;
6 beta1=1;
7 DO beta2=-1, 1;
8 DO beta3=0.05, 0.5;
9 DO t=0 TO 4 BY 0.05;

10 s=COMPRESS(’(’ || beta1 || ’,’ || beta2 || ’,’ || beta3 || ’)’);
11 f_g=EXP(beta1+beta2*beta3**t);
12 OUTPUT;
13 END;
14 END;
15 END;
16

17 /* Graphical Options */
18 SYMBOL1 C=GREEN V=NONE I=JOIN L=1;
19 SYMBOL2 C=GREEN V=NONE I=JOIN L=2;
20 SYMBOL3 C=GREEN V=NONE I=JOIN L=3;
21 SYMBOL4 C=GREEN V=NONE I=JOIN L=33;
22 AXIS1 LABEL=(H=2 ’f’ H=1 ’G’ H=2 ’(t)’);
23 AXIS2 LABEL=(’t’);
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24 LEGEND1 LABEL=(F=CGREEK H=2 ’(b’ H=1 ’1’ H=2 ’,b’ H=1 ’2’ H=2 ’,b’ H=1
↪→ ’3’ H=2 ’)=’);

25

26 /*Plot the functions */
27 PROC GPLOT DATA=data1;
28 PLOT f_g*t=s / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;
29 RUN; QUIT;

We obviously have

log(fG(t)) = β1 + β2β
t
3 = β1 + β2 exp(log(β3)t),

and thus log(fG) is a Mitscherlich function with parameters β1, β2 and
log(β3). The saturation size obviously is exp(β1).

The Allometric Function
The allometric function

fa(t) := fa(t; β1, β2) = β2t
β1, t ≥ 0, (1.9)

with β1 ∈ R, β2 > 0, is a common trend function in biometry and
economics. It can be viewed as a particular Cobb–Douglas function,
which is a popular econometric model to describe the output produced
by a system depending on an input. Since

log(fa(t)) = log(β2) + β1 log(t), t > 0,

is a linear function of log(t), with slope β1 and intercept log(β2), we
can assume a linear regression model for the logarithmic data log(yt)

log(yt) = log(β2) + β1 log(t) + εt, t ≥ 1,

where εt are the error variables.

Example 1.1.3. (Income Data). Table 1.1.2 shows the (accumulated)
annual average increases of gross and net incomes in thousands DM
(deutsche mark) in Germany, starting in 1960.
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Year t Gross income xt Net income yt

1960 0 0 0
1961 1 0.627 0.486
1962 2 1.247 0.973
1963 3 1.702 1.323
1964 4 2.408 1.867
1965 5 3.188 2.568
1966 6 3.866 3.022
1967 7 4.201 3.259
1968 8 4.840 3.663
1969 9 5.855 4.321
1970 10 7.625 5.482

Table 1.1.2: Income Data.

We assume that the increase of the net income yt is an allometric
function of the time t and obtain

log(yt) = log(β2) + β1 log(t) + εt. (1.10)

The least squares estimates of β1 and log(β2) in the above linear re-
gression model are (see, for example Falk et al., 2002, Theorem 3.2.2)

β̂1 =

∑10
t=1(log(t)− log(t))(log(yt)− log(y))∑10

t=1(log(t)− log(t))2
= 1.019,

where log(t) := 1
10

∑10
t=1 log(t) = 1.5104, log(y) := 1

10

∑10
t=1 log(yt) =

0.7849, and hence

̂log(β2) = log(y)− β̂1log(t) = −0.7549

We estimate β2 therefore by

β̂2 = exp(−0.7549) = 0.4700.

The predicted value ŷt corresponds to the time t

ŷt = 0.47t1.019. (1.11)
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t yt − ŷt
1 0.0159
2 0.0201
3 -0.1176
4 -0.0646
5 0.1430
6 0.1017
7 -0.1583
8 -0.2526
9 -0.0942

10 0.5662

Table 1.1.3: Residuals of Income Data.

Table 1.1.3 lists the residuals yt − ŷt by which one can judge the
goodness of fit of the model (1.11).
A popular measure for assessing the fit is the squared multiple corre-
lation coefficient or R2-value

R2 := 1−
∑n

t=1(yt − ŷt)2∑n
t=1(yt − ȳ)2 (1.12)

where ȳ := n−1∑n
t=1 yt is the average of the observations yt (cf Falk

et al., 2002, Section 3.3). In the linear regression model with ŷt based
on the least squares estimates of the parameters, R2 is necessarily
between zero and one with the implications R2 = 1 iff1 ∑n

t=1(yt −
ŷt)

2 = 0 (see Exercise 1.4). A value of R2 close to 1 is in favor of
the fitted model. The model (1.10) has R2 equal to 0.9934, whereas
(1.11) has R2 = 0.9789. Note, however, that the initial model (1.9) is

not linear and β̂2 is not the least squares estimates, in which case R2

is no longer necessarily between zero and one and has therefore to be
viewed with care as a crude measure of fit.
The annual average gross income in 1960 was 6148 DM and the cor-
responding net income was 5178 DM. The actual average gross and
net incomes were therefore x̃t := xt + 6.148 and ỹt := yt + 5.178 with

1if and only if
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the estimated model based on the above predicted values ŷt

ˆ̃yt = ŷt + 5.178 = 0.47t1.019 + 5.178.

Note that the residuals ỹt − ˆ̃yt = yt − ŷt are not influenced by adding
the constant 5.178 to yt. The above models might help judging the
average tax payer’s situation between 1960 and 1970 and to predict
his future one. It is apparent from the residuals in Table 1.1.3 that
the net income yt is an almost perfect multiple of t for t between 1
and 9, whereas the large increase y10 in 1970 seems to be an outlier.
Actually, in 1969 the German government had changed and in 1970 a
long strike in Germany caused an enormous increase in the income of
civil servants.

1.2 Linear Filtering of Time Series
In the following we consider the additive model (1.1) and assume that
there is no long term cyclic component. Nevertheless, we allow a
trend, in which case the smooth nonrandom component Gt equals the
trend function Tt. Our model is, therefore, the decomposition

Yt = Tt + St +Rt, t = 1, 2, . . . (1.13)

with E(Rt) = 0. Given realizations yt, t = 1, 2, . . . , n, of this time

series, the aim of this section is the derivation of estimators T̂t, Ŝt
of the nonrandom functions Tt and St and to remove them from the
time series by considering yt − T̂t or yt − Ŝt instead. These series are
referred to as the trend or seasonally adjusted time series. The data
yt are decomposed in smooth parts and irregular parts that fluctuate
around zero.

Linear Filters
Let a−r, a−r+1, . . . , as be arbitrary real numbers, where r, s ≥ 0, r +
s+ 1 ≤ n. The linear transformation

Y ∗t :=
s∑

u=−r
auYt−u, t = s+ 1, . . . , n− r,
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is referred to as a linear filter with weights a−r, . . . , as. The Yt are
called input and the Y ∗t are called output.
Obviously, there are less output data than input data, if (r, s) 6=
(0, 0). A positive value s > 0 or r > 0 causes a truncation at the
beginning or at the end of the time series; see Example 1.2.2 below.
For convenience, we call the vector of weights (au) = (a−r, . . . , as)

T a
(linear) filter.
A filter (au), whose weights sum up to one,

∑s
u=−r au = 1, is called

moving average. The particular cases au = 1/(2s+ 1), u = −s, . . . , s,
with an odd number of equal weights, or au = 1/(2s), u = −s +
1, . . . , s− 1, a−s = as = 1/(4s), aiming at an even number of weights,
are simple moving averages of order 2s+ 1 and 2s, respectively.
Filtering a time series aims at smoothing the irregular part of a time
series, thus detecting trends or seasonal components, which might
otherwise be covered by fluctuations. While for example a digital
speedometer in a car can provide its instantaneous velocity, thereby
showing considerably large fluctuations, an analog instrument that
comes with a hand and a built-in smoothing filter, reduces these fluc-
tuations but takes a while to adjust. The latter instrument is much
more comfortable to read and its information, reflecting a trend, is
sufficient in most cases.
To compute the output of a simple moving average of order 2s + 1,
the following obvious equation is useful:

Y ∗t+1 = Y ∗t +
1

2s+ 1
(Yt+s+1 − Yt−s).

This filter is a particular example of a low-pass filter, which preserves
the slowly varying trend component of a series but removes from it the
rapidly fluctuating or high frequency component. There is a trade-off
between the two requirements that the irregular fluctuation should be
reduced by a filter, thus leading, for example, to a large choice of s in
a simple moving average, and that the long term variation in the data
should not be distorted by oversmoothing, i.e., by a too large choice
of s. If we assume, for example, a time series Yt = Tt + Rt without
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seasonal component, a simple moving average of order 2s+ 1 leads to

Y ∗t =
1

2s+ 1

s∑
u=−s

Yt−u

=
1

2s+ 1

s∑
u=−s

Tt−u +
1

2s+ 1

s∑
u=−s

Rt−u =: T ∗t +R∗t ,

where by some law of large numbers argument

R∗t ∼ E(Rt) = 0,

if s is large. But T ∗t might then no longer reflect Tt. A small choice of
s, however, has the effect that R∗t is not yet close to its expectation.

Example 1.2.1. (Unemployed Females Data). The series of monthly
unemployed females between ages 16 and 19 in the United States
from January 1961 to December 1985 (in thousands) is smoothed by
a simple moving average of order 17. The data together with their
smoothed counterparts can be seen in Figure 1.2.1.

Plot 1.2.1: Unemployed young females in the US and the smoothed
values (simple moving average of order 17).
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1 /* females.sas */
2 TITLE1 ’Simple Moving Average of Order 17’;
3 TITLE2 ’Unemployed Females Data’;
4

5 /* Read in the data and generate SAS-formatted date */
6 DATA data1;
7 INFILE ’c:\data\female.txt’;
8 INPUT upd @@;
9 date=INTNX(’month’,’01jan61’d, _N_-1);

10 FORMAT date yymon.;
11

12 /* Compute the simple moving averages of order 17 */
13 PROC EXPAND DATA=data1 OUT=data2 METHOD=NONE;
14 ID date;
15 CONVERT upd=ma17 / TRANSFORM=(CMOVAVE 17);
16

17 /* Graphical options */
18 AXIS1 LABEL=(ANGLE=90 ’Unemployed Females’);
19 AXIS2 LABEL=(’Date’);
20 SYMBOL1 V=DOT C=GREEN I=JOIN H=.5 W=1;
21 SYMBOL2 V=STAR C=GREEN I=JOIN H=.5 W=1;
22 LEGEND1 LABEL=NONE VALUE=(’Original data’ ’Moving average of order

↪→17’);
23

24 /* Plot the data together with the simple moving average */
25 PROC GPLOT DATA=data2;
26 PLOT upd*date=1 ma17*date=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2

↪→LEGEND=LEGEND1;
27

28 RUN; QUIT;

In the data step the values for the variable upd
are read from an external file. The option @@
allows SAS to read the data over line break in
the original txt-file.
By means of the function INTNX, a new vari-
able in a date format is generated, containing
monthly data starting from the 1st of January
1961. The temporarily created variable N ,
which counts the number of cases, is used to
determine the distance from the starting value.
The FORMAT statement attributes the format
yymon to this variable, consisting of four digits
for the year and three for the month.
The SAS procedure EXPAND computes simple
moving averages and stores them in the file
specified in the OUT= option. EXPAND is also
able to interpolate series. For example if one
has a quaterly series and wants to turn it into
monthly data, this can be done by the method
stated in the METHOD= option. Since we do not

wish to do this here, we choose METHOD=NONE.
The ID variable specifies the time index, in our
case the date, by which the observations are
ordered. The CONVERT statement now com-
putes the simple moving average. The syntax is
original=smoothed variable. The smooth-
ing method is given in the TRANSFORM option.
CMOVAVE number specifies a simple moving
average of order number. Remark that for the
values at the boundary the arithmetic mean of
the data within the moving window is computed
as the simple moving average. This is an ex-
tension of our definition of a simple moving av-
erage. Also other smoothing methods can be
specified in the TRANSFORM statement like the
exponential smoother with smooting parameter
alpha (see page 33ff.) by EWMA alpha.
The smoothed values are plotted together with
the original series against the date in the final
step.
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Seasonal Adjustment
A simple moving average of a time series Yt = Tt + St + Rt now
decomposes as

Y ∗t = T ∗t + S∗t +R∗t ,

where S∗t is the pertaining moving average of the seasonal components.
Suppose, moreover, that St is a p-periodic function, i.e.,

St = St+p, t = 1, . . . , n− p.

Take for instance monthly average temperatures Yt measured at fixed
points, in which case it is reasonable to assume a periodic seasonal
component St with period p = 12 months. A simple moving average
of order p then yields a constant value S∗t = S, t = p, p+ 1, . . . , n− p.
By adding this constant S to the trend function Tt and putting T ′t :=
Tt + S, we can assume in the following that S = 0. Thus we obtain
for the differences

Dt := Yt − Y ∗t ∼ St +Rt.

To estimate St we average the differences with lag p (note that they
vary around St) by

D̄t :=
1

nt

nt−1∑
j=0

Dt+jp ∼ St, t = 1, . . . , p,

D̄t := D̄t−p for t > p,

where nt is the number of periods available for the computation of D̄t.
Thus,

Ŝt := D̄t −
1

p

p∑
j=1

D̄j ∼ St −
1

p

p∑
j=1

Sj = St (1.14)

is an estimator of St = St+p = St+2p = . . . satisfying

1

p

p−1∑
j=0

Ŝt+j = 0 =
1

p

p−1∑
j=0

St+j.
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The differences Yt − Ŝt with a seasonal component close to zero are
then the seasonally adjusted time series.

Example 1.2.2. For the 51 Unemployed1 Data in Example 1.1.1 it
is obviously reasonable to assume a periodic seasonal component with
p = 12 months. A simple moving average of order 12

Y ∗t =
1

12

(1

2
Yt−6 +

5∑
u=−5

Yt−u +
1

2
Yt+6

)
, t = 7, . . . , 45,

then has a constant seasonal component, which we assume to be zero
by adding this constant to the trend function. Table 1.2.1 contains
the values of Dt, D̄t and the estimates Ŝt of St.

Month dt (rounded values)
d̄t (rounded) ŝt(rounded)1976 1977 1978 1979

January 53201 56974 48469 52611 52814 53136
February 59929 54934 54102 51727 55173 55495
March 24768 17320 25678 10808 19643 19966
April -3848 42 -5429 – -3079 -2756
May -19300 -11680 -14189 – -15056 -14734
June -23455 -17516 -20116 – -20362 -20040
July -26413 -21058 -20605 – -22692 -22370
August -27225 -22670 -20393 – -23429 -23107
September -27358 -24646 -20478 – -24161 -23839
October -23967 -21397 -17440 – -20935 -20612
November -14300 -10846 -11889 – -12345 -12023
December 11540 12213 7923 – 10559 10881

Table 1.2.1: Table of dt, d̄t and of estimates ŝt of the seasonal compo-
nent St in the Unemployed1 Data.

We obtain for these data

ŝt = d̄t −
1

12

12∑
j=1

d̄j = d̄t +
3867

12
= d̄t + 322.25.

Example 1.2.3. (Temperatures Data). The monthly average tem-
peratures near Würzburg, Germany were recorded from the 1st of
January 1995 to the 31st of December 2004. The data together with
their seasonally adjusted counterparts can be seen in Figure 1.2.2.
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Plot 1.2.2: Monthly average temperatures near Würzburg and sea-
sonally adjusted values.

1 /* temperatures.sas */
2 TITLE1 ’Original and seasonally adjusted data’;
3 TITLE2 ’Temperatures data’;
4

5 /* Read in the data and generate SAS-formatted date */
6 DATA temperatures;
7 INFILE ’c:\data\temperatures.txt’;
8 INPUT temperature;
9 date=INTNX(’month’,’01jan95’d,_N_-1);

10 FORMAT date yymon.;
11

12 /* Make seasonal adjustment */
13 PROC TIMESERIES DATA=temperatures OUT=series SEASONALITY=12 OUTDECOMP=

↪→deseason;
14 VAR temperature;
15 DECOMP /MODE=ADD;
16

17 /* Merge necessary data for plot */
18 DATA plotseries;
19 MERGE temperatures deseason(KEEP=SA);
20

21 /* Graphical options */
22 AXIS1 LABEL=(ANGLE=90 ’temperatures’);
23 AXIS2 LABEL=(’Date’);
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24 SYMBOL1 V=DOT C=GREEN I=JOIN H=1 W=1;
25 SYMBOL2 V=STAR C=GREEN I=JOIN H=1 W=1;
26

27 /* Plot data and seasonally adjusted series */
28 PROC GPLOT data=plotseries;
29 PLOT temperature*date=1 SA*date=2 /OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;
30

31 RUN; QUIT;

In the data step the values for the variable
temperature are read from an external file.
By means of the function INTNX, a date vari-
able is generated, see Program 1.2.1 (fe-
males.sas).
The SAS procedure TIMESERIES together with
the statement DECOMP computes a seasonally
adjusted series, which is stored in the file after
the OUTDECOMP option. With MODE=ADD an ad-
ditive model of the time series is assumed. The

default is a multiplicative model. The original
series together with an automated time variable
(just a counter) is stored in the file specified in
the OUT option. In the option SEASONALITY
the underlying period is specified. Depending
on the data it can be any natural number.

The seasonally adjusted values can be refer-
enced by SA and are plotted together with the
original series against the date in the final step.

The Census X–11 Program
In the fifties of the 20th century the U.S. Bureau of the Census has
developed a program for seasonal adjustment of economic time series,
called the Census X–11 Program. It is based on monthly observations
and assumes an additive model

Yt = Tt + St +Rt

as in (1.13) with a seasonal component St of period p = 12. We give a
brief summary of this program following Wallis (1974), which results
in a moving average with symmetric weights. The census procedure
is discussed in Shiskin and Eisenpress (1957); a complete description
is given by Shiskin et al. (1967). A theoretical justification based on
stochastic models is provided by Cleveland and Tiao (1976)).
The X–11 Program essentially works as the seasonal adjustment de-
scribed above, but it adds iterations and various moving averages.
The different steps of this program are

(i) Compute a simple moving average Y ∗t of order 12 to leave es-
sentially a trend Y ∗t ∼ Tt.
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(ii) The difference
Dt := Yt − Y ∗t ∼ St +Rt

then leaves approximately the seasonal plus irregular compo-
nent.

(iii) Apply a moving average of order 5 to each month separately by
computing

D̄
(1)
t :=

1

9

(
D

(1)
t−24 + 2D

(1)
t−12 + 3D

(1)
t + 2D

(1)
t+12 +D

(1)
t+24

)
∼ St,

which gives an estimate of the seasonal component St. Note
that the moving average with weights (1, 2, 3, 2, 1)/9 is a simple
moving average of length 3 of simple moving averages of length
3.

(iv) The D̄
(1)
t are adjusted to approximately sum up to 0 over any

12-months period by putting

Ŝ
(1)
t := D̄

(1)
t −

1

12

(1

2
D̄

(1)
t−6 + D̄

(1)
t−5 + · · ·+ D̄

(1)
t+5 +

1

2
D̄

(1)
t+6

)
.

(v) The differences

Y
(1)
t := Yt − Ŝ(1)

t ∼ Tt +Rt

then are the preliminary seasonally adjusted series, quite in the
manner as before.

(vi) The adjusted data Y
(1)
t are further smoothed by a Henderson

moving average Y ∗∗t of order 9, 13, or 23.

(vii) The differences

D
(2)
t := Yt − Y ∗∗t ∼ St +Rt

then leave a second estimate of the sum of the seasonal and
irregular components.
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(viii) A moving average of order 7 is applied to each month separately

D̄
(2)
t :=

3∑
u=−3

auD
(2)
t−12u,

where the weights au come from a simple moving average of
order 3 applied to a simple moving average of order 5 of the
original data, i.e., the vector of weights is (1, 2, 3, 3, 3, 2, 1)/15.
This gives a second estimate of the seasonal component St.

(ix) Step (4) is repeated yielding approximately centered estimates

Ŝ
(2)
t of the seasonal components.

(x) The differences

Y
(2)
t := Yt − Ŝ(2)

t

then finally give the seasonally adjusted series.

Depending on the length of the Henderson moving average used in step

(6), Y
(2)
t is a moving average of length 165, 169 or 179 of the original

data (see Exercise 1.10). Observe that this leads to averages at time
t of the past and future seven years, roughly, where seven years is a
typical length of business cycles observed in economics (Juglar cycle).
The U.S. Bureau of Census has recently released an extended version
of the X–11 Program called Census X–12-ARIMA. It is implemented
in SAS version 8.1 and higher as PROC X12; we refer to the SAS
online documentation for details.
We will see in Example 5.2.4 on page 171 that linear filters may cause
unexpected effects and so, it is not clear a priori how the seasonal
adjustment filter described above behaves. Moreover, end-corrections
are necessary, which cover the important problem of adjusting current
observations. This can be done by some extrapolation.
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Plot 1.2.3: Plot of the Unemployed1 Data yt and of y
(2)
t , seasonally

adjusted by the X–11 procedure.

1 /* unemployed1_x11.sas */
2 TITLE1 ’Original and X-11 seasonal adjusted data’;
3 TITLE2 ’Unemployed1 Data’;
4

5 /* Read in the data and generated SAS-formatted date */
6 DATA data1;
7 INFILE ’c:\data\unemployed1.txt’;
8 INPUT month $ t upd;
9 date=INTNX(’month’,’01jul75’d, _N_-1);

10 FORMAT date yymon.;
11

12 /* Apply X-11-Program */
13 PROC X11 DATA=data1;
14 MONTHLY DATE=date ADDITIVE;
15 VAR upd;
16 OUTPUT OUT=data2 B1=upd D11=updx11;
17

18 /* Graphical options */
19 AXIS1 LABEL=(ANGLE=90 ’unemployed’);
20 AXIS2 LABEL=(’Date’) ;
21 SYMBOL1 V=DOT C=GREEN I=JOIN H=1 W=1;
22 SYMBOL2 V=STAR C=GREEN I=JOIN H=1 W=1;
23 LEGEND1 LABEL=NONE VALUE=(’original’ ’adjusted’);
24

25 /* Plot data and adjusted data */
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26 PROC GPLOT DATA=data2;
27 PLOT upd*date=1 updx11*date=2
28 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;
29 RUN; QUIT;

In the data step values for the variables month,
t and upd are read from an external file, where
month is defined as a character variable by
the succeeding $ in the INPUT statement. By
means of the function INTNX, a date variable is
generated, see Program 1.2.1 (females.sas).
The SAS procedure X11 applies the Census X–
11 Program to the data. The MONTHLY state-
ment selects an algorithm for monthly data,
DATE defines the date variable and ADDITIVE
selects an additive model (default: multiplica-
tive model). The results for this analysis for the

variable upd (unemployed) are stored in a data
set named data2, containing the original data
in the variable upd and the final results of the
X–11 Program in updx11.

The last part of this SAS program consists of
statements for generating the plot. Two AXIS
and two SYMBOL statements are used to cus-
tomize the graphic containing two plots, the
original data and the by X11 seasonally ad-
justed data. A LEGEND statement defines the
text that explains the symbols.

Best Local Polynomial Fit
A simple moving average works well for a locally almost linear time
series, but it may have problems to reflect a more twisted shape.
This suggests fitting higher order local polynomials. Consider 2k +
1 consecutive data yt−k, . . . , yt, . . . , yt+k from a time series. A local
polynomial estimator of order p < 2k + 1 is the minimizer β0, . . . , βp
satisfying

k∑
u=−k

(yt+u − β0 − β1 u− · · · − βp up)2 = min . (1.15)

If we differentiate the left hand side with respect to each βj and set
the derivatives equal to zero, we see that the minimizers satisfy the
p+ 1 linear equations

β0

k∑
u=−k

uj + β1

k∑
u=−k

uj+1 + · · ·+ βp

k∑
u=−k

uj+p =
k∑

u=−k

ujyt+u

for j = 0, . . . , p. These p + 1 equations, which are called normal
equations , can be written in matrix form as

XTXβ = XTy (1.16)
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where

X =


1 −k (−k)2 . . . (−k)p

1 −k + 1 (−k + 1)2 . . . (−k + 1)p
... . . . ...
1 k k2 . . . kp

 (1.17)

is the design matrix , β = (β0, . . . , βp)
T and y = (yt−k, . . . , yt+k)

T .
The rank of XTX equals that of X, since their null spaces coincide
(Exercise 1.12). Thus, the matrix XTX is invertible iff the columns
of X are linearly independent. But this is an immediate consequence
of the fact that a polynomial of degree p has at most p different roots
(Exercise 1.13). The normal equations (1.16) have, therefore, the
unique solution

β = (XTX)−1XTy. (1.18)

The linear prediction of yt+u, based on u, u2, . . . , up, is

ŷt+u = (1, u, . . . , up)β =

p∑
j=0

βju
j.

Choosing u = 0 we obtain in particular that β0 = ŷt is a predictor of
the central observation yt among yt−k, . . . , yt+k. The local polynomial
approach consists now in replacing yt by the intercept β0.
Though it seems as if this local polynomial fit requires a great deal
of computational effort by calculating β0 for each yt, it turns out that
it is actually a moving average. First observe that we can write by
(1.18)

β0 =
k∑

u=−k

cuyt+u

with some cu ∈ R which do not depend on the values yu of the time
series and hence, (cu) is a linear filter. Next we show that the cu sum
up to 1. Choose to this end yt+u = 1 for u = −k, . . . , k. Then β0 = 1,
β1 = · · · = βp = 0 is an obvious solution of the minimization problem
(1.15). Since this solution is unique, we obtain

1 = β0 =
k∑

u=−k

cu
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and thus, (cu) is a moving average. As can be seen in Exercise 1.14
it actually has symmetric weights. We summarize our considerations
in the following result.

Theorem 1.2.4. Fitting locally by least squares a polynomial of degree
p to 2k+1 > p consecutive data points yt−k, . . . , yt+k and predicting yt
by the resulting intercept β0, leads to a moving average (cu) of order
2k + 1, given by the first row of the matrix (XTX)−1XT .

Example 1.2.5. Fitting locally a polynomial of degree 2 to five con-
secutive data points leads to the moving average (Exercise 1.14)

(cu) =
1

35
(−3, 12, 17, 12,−3)T .

An extensive discussion of local polynomial fit is in Kendall and Ord
(1993, Sections 3.2-3.13). For a book-length treatment of local poly-
nomial estimation we refer to Fan and Gijbels (1996). An outline of
various aspects such as the choice of the degree of the polynomial and
further background material is given in Simonoff (1996, Section 5.2).

Difference Filter
We have already seen that we can remove a periodic seasonal compo-
nent from a time series by utilizing an appropriate linear filter. We
will next show that also a polynomial trend function can be removed
by a suitable linear filter.

Lemma 1.2.6. For a polynomial f(t) := c0 + c1t+ · · ·+ cpt
p of degree

p, the difference
∆f(t) := f(t)− f(t− 1)

is a polynomial of degree at most p− 1.

Proof. The assertion is an immediate consequence of the binomial
expansion

(t− 1)p =

p∑
k=0

(
p

k

)
tk(−1)p−k = tp − ptp−1 + · · ·+ (−1)p.



30 Elements of Exploratory Time Series Analysis

The preceding lemma shows that differencing reduces the degree of a
polynomial. Hence,

∆2f(t) := ∆f(t)−∆f(t− 1) = ∆(∆f(t))

is a polynomial of degree not greater than p− 2, and

∆qf(t) := ∆(∆q−1f(t)), 1 ≤ q ≤ p,

is a polynomial of degree at most p − q. The function ∆pf(t) is
therefore a constant. The linear filter

∆Yt = Yt − Yt−1

with weights a0 = 1, a1 = −1 is the first order difference filter. The
recursively defined filter

∆pYt = ∆(∆p−1Yt), t = p, . . . , n,

is the difference filter of order p.
The difference filter of second order has, for example, weights a0 =
1, a1 = −2, a2 = 1

∆2Yt = ∆Yt −∆Yt−1

= Yt − Yt−1 − Yt−1 + Yt−2 = Yt − 2Yt−1 + Yt−2.

If a time series Yt has a polynomial trend Tt =
∑p

k=0 ckt
k for some

constants ck, then the difference filter ∆pYt of order p removes this
trend up to a constant. Time series in economics often have a trend
function that can be removed by a first or second order difference
filter.

Example 1.2.7. (Electricity Data). The following plots show the
total annual output of electricity production in Germany between 1955
and 1979 in millions of kilowatt-hours as well as their first and second
order differences. While the original data show an increasing trend,
the second order differences fluctuate around zero having no more
trend, but there is now an increasing variability visible in the data.
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Plot 1.2.4: Annual electricity output, first and second order differ-
ences.

1 /* electricity_differences.sas */
2 TITLE1 ’First and second order differences’;
3 TITLE2 ’Electricity Data’;
4 /* Note that this program requires the macro mkfields.sas to be

↪→submitted before this program */
5

6 /* Read in the data, compute moving average of length as 12
7 as well as first and second order differences */
8 DATA data1(KEEP=year sum delta1 delta2);
9 INFILE ’c:\data\electric.txt’;

10 INPUT year t jan feb mar apr may jun jul aug sep oct nov dec;
11 sum=jan+feb+mar+apr+may+jun+jul+aug+sep+oct+nov+dec;
12 delta1=DIF(sum);
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13 delta2=DIF(delta1);
14

15 /* Graphical options */
16 AXIS1 LABEL=NONE;
17 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;
18

19 /* Generate three plots */
20 GOPTIONS NODISPLAY;
21 PROC GPLOT DATA=data1 GOUT=fig;
22 PLOT sum*year / VAXIS=AXIS1 HAXIS=AXIS2;
23 PLOT delta1*year / VAXIS=AXIS1 VREF=0;
24 PLOT delta2*year / VAXIS=AXIS1 VREF=0;
25 RUN;
26

27 /* Display them in one output */
28 GOPTIONS DISPLAY;
29 PROC GREPLAY NOFS IGOUT=fig TC=SASHELP.TEMPLT;
30 TEMPLATE=V3;
31 TREPLAY 1:GPLOT 2:GPLOT1 3:GPLOT2;
32 RUN; DELETE _ALL_; QUIT;

In the first data step, the raw data are read from
a file. Because the electric production is stored
in different variables for each month of a year,
the sum must be evaluated to get the annual
output. Using the DIF function, the resulting
variables delta1 and delta2 contain the first
and second order differences of the original an-
nual sums.
To display the three plots of sum, delta1
and delta2 against the variable year within
one graphic, they are first plotted using the
procedure GPLOT. Here the option GOUT=fig
stores the plots in a graphics catalog named
fig, while GOPTIONS NODISPLAY causes no
output of this procedure. After changing the
GOPTIONS back to DISPLAY, the procedure
GREPLAY is invoked. The option NOFS (no full-
screen) suppresses the opening of a GREPLAY

window. The subsequent two line mode state-
ments are read instead. The option IGOUT
determines the input graphics catalog, while
TC=SASHELP.TEMPLT causes SAS to take the
standard template catalog. The TEMPLATE
statement selects a template from this catalog,
which puts three graphics one below the other.
The TREPLAY statement connects the defined
areas and the plots of the the graphics catalog.
GPLOT, GPLOT1 and GPLOT2 are the graphical
outputs in the chronological order of the GPLOT
procedure. The DELETE statement after RUN
deletes all entries in the input graphics catalog.

Note that SAS by default prints borders, in or-
der to separate the different plots. Here these
border lines are suppressed by defining WHITE
as the border color.

For a time series Yt = Tt+St+Rt with a periodic seasonal component
St = St+p = St+2p = . . . the difference

Y ∗t := Yt − Yt−p

obviously removes the seasonal component. An additional differencing
of proper length can moreover remove a polynomial trend, too. Note
that the order of seasonal and trend adjusting makes no difference.



1.2 Linear Filtering of Time Series 33

Exponential Smoother
Let Y0, . . . , Yn be a time series and let α ∈ [0, 1] be a constant. The
linear filter

Y ∗t = αYt + (1− α)Y ∗t−1, t ≥ 1,

with Y ∗0 = Y0 is called exponential smoother.

Lemma 1.2.8. For an exponential smoother with constant α ∈ [0, 1]
we have

Y ∗t = α
t−1∑
j=0

(1− α)jYt−j + (1− α)tY0, t = 1, 2, . . . , n.

Proof. The assertion follows from induction. We have for t = 1 by
definition Y ∗1 = αY1 +(1−α)Y0. If the assertion holds for t, we obtain
for t+ 1

Y ∗t+1 = αYt+1 + (1− α)Y ∗t

= αYt+1 + (1− α)
(
α

t−1∑
j=0

(1− α)jYt−j + (1− α)tY0

)
= α

t∑
j=0

(1− α)jYt+1−j + (1− α)t+1Y0.

The parameter α determines the smoothness of the filtered time se-
ries. A value of α close to 1 puts most of the weight on the actual
observation Yt, resulting in a highly fluctuating series Y ∗t . On the
other hand, an α close to 0 reduces the influence of Yt and puts most
of the weight to the past observations, yielding a smooth series Y ∗t .
An exponential smoother is typically used for monitoring a system.
Take, for example, a car having an analog speedometer with a hand.
It is more convenient for the driver if the movements of this hand are
smoothed, which can be achieved by α close to zero. But this, on the
other hand, has the effect that an essential alteration of the speed can
be read from the speedometer only with a certain delay.
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Corollary 1.2.9. (i) Suppose that the random variables Y0, . . . , Yn
have common expectation µ and common variance σ2 > 0. Then
we have for the exponentially smoothed variables with smoothing
parameter α ∈ (0, 1)

E(Y ∗t ) = α
t−1∑
j=0

(1− α)jµ+ µ(1− α)t

= µ(1− (1− α)t) + µ(1− α)t = µ. (1.19)

If the Yt are in addition uncorrelated, then

E((Y ∗t − µ)2) = α2
t−1∑
j=0

(1− α)2jσ2 + (1− α)2tσ2

= σ2α2 1− (1− α)2t

1− (1− α)2 + (1− α)2tσ2

−→t→∞
σ2α

2− α
< σ2. (1.20)

(ii) Suppose that the random variables Y0, Y1, . . . satisfy E(Yt) = µ
for 0 ≤ t ≤ N − 1, and E(Yt) = λ for t ≥ N . Then we have for
t ≥ N

E(Y ∗t ) = α
t−N∑
j=0

(1− α)jλ+ α
t−1∑

j=t−N+1

(1− α)jµ+ (1− α)tµ

= λ(1− (1− α)t−N+1)+

µ
(

(1− α)t−N+1(1− (1− α)N−1) + (1− α)t
)

−→t→∞ λ. (1.21)

The preceding result quantifies the influence of the parameter α on
the expectation and on the variance i.e., the smoothness of the filtered
series Y ∗t , where we assume for the sake of a simple computation of
the variance that the Yt are uncorrelated. If the variables Yt have
common expectation µ, then this expectation carries over to Y ∗t . After
a change point N , where the expectation of Yt changes for t ≥ N from
µ to λ 6= µ, the filtered variables Y ∗t are, however, biased. This bias,
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which will vanish as t increases, is due to the still inherent influence
of past observations Yt, t < N . The influence of these variables on the
current expectation can be reduced by switching to a larger value of
α. The price for the gain in correctness of the expectation is, however,
a higher variability of Y ∗t (see Exercise 1.17).
An exponential smoother is often also used to make forecasts, explic-
itly by predicting Yt+1 through Y ∗t . The forecast error Yt+1−Y ∗t =: et+1
then satisfies the equation Y ∗t+1 = αet+1 + Y ∗t .
Also a motivation of the exponential smoother via a least squares
approach is possible, see Exercise 1.18.

1.3 Autocovariances and Autocorrelations
Autocovariances and autocorrelations are measures of dependence be-
tween variables in a time series. Suppose that Y1, . . . , Yn are square
integrable random variables with the property that the covariance
Cov(Yt+k, Yt) = E((Yt+k − E(Yt+k))(Yt − E(Yt))) of observations with
lag k does not depend on t. Then

γ(k) := Cov(Yk+1, Y1) = Cov(Yk+2, Y2) = . . .

is called autocovariance function and

ρ(k) :=
γ(k)

γ(0)
, k = 0, 1, . . .

is called autocorrelation function.
Let y1, . . . , yn be realizations of a time series Y1, . . . , Yn. The empirical
counterpart of the autocovariance function is

c(k) :=
1

n

n−k∑
t=1

(yt+k − ȳ)(yt − ȳ) with ȳ =
1

n

n∑
t=1

yt

and the empirical autocorrelation is defined by

r(k) :=
c(k)

c(0)
=

∑n−k
t=1 (yt+k − ȳ)(yt − ȳ)∑n

t=1(yt − ȳ)2 .

See Exercise 2.9 (ii) for the particular role of the factor 1/n in place
of 1/(n − k) in the definition of c(k). The graph of the function
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r(k), k = 0, 1, . . . , n − 1, is called correlogram. It is based on the
assumption of equal expectations and should, therefore, be used for a
trend adjusted series. The following plot is the correlogram of the first
order differences of the Sunspot Data. The description can be found
on page 207. It shows high and decreasing correlations at regular
intervals.

Plot 1.3.1: Correlogram of the first order differences of the Sunspot
Data.

1 /* sunspot_correlogram */
2 TITLE1 ’Correlogram of first order differences’;
3 TITLE2 ’Sunspot Data’;
4

5 /* Read in the data, generate year of observation and
6 compute first order differences */
7 DATA data1;
8 INFILE ’c:\data\sunspot.txt’;
9 INPUT spot @@;

10 date=1748+_N_;
11 diff1=DIF(spot);
12

13 /* Compute autocorrelation function */
14 PROC ARIMA DATA=data1;
15 IDENTIFY VAR=diff1 NLAG=49 OUTCOV=corr NOPRINT;
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16

17 /* Graphical options */
18 AXIS1 LABEL=(’r(k)’);
19 AXIS2 LABEL=(’k’) ORDER=(0 12 24 36 48) MINOR=(N=11);
20 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;
21

22 /* Plot autocorrelation function */
23 PROC GPLOT DATA=corr;
24 PLOT CORR*LAG / VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
25 RUN; QUIT;

In the data step, the raw data are read into
the variable spot. The specification @@ sup-
presses the automatic line feed of the INPUT
statement after every entry in each row, see
also Program 1.2.1 (females.txt). The variable
date and the first order differences of the vari-
able of interest spot are calculated.
The following procedure ARIMA is a crucial
one in time series analysis. Here we just
need the autocorrelation of delta, which will
be calculated up to a lag of 49 (NLAG=49)
by the IDENTIFY statement. The option

OUTCOV=corr causes SAS to create a data set
corr containing among others the variables
LAG and CORR. These two are used in the fol-
lowing GPLOT procedure to obtain a plot of the
autocorrelation function. The ORDER option in
the AXIS2 statement specifies the values to
appear on the horizontal axis as well as their
order, and the MINOR option determines the
number of minor tick marks between two major
ticks. VREF=0 generates a horizontal reference
line through the value 0 on the vertical axis.

The autocovariance function γ obviously satisfies γ(0) ≥ 0 and, by
the Cauchy-Schwarz inequality

|γ(k)| = |E((Yt+k − E(Yt+k))(Yt − E(Yt)))|
≤ E(|Yt+k − E(Yt+k)||Yt − E(Yt)|)
≤ Var(Yt+k)

1/2 Var(Yt)
1/2

= γ(0) for k ≥ 0.

Thus we obtain for the autocorrelation function the inequality

|ρ(k)| ≤ 1 = ρ(0).

Variance Stabilizing Transformation
The scatterplot of the points (t, yt) sometimes shows a variation of
the data yt depending on their height.

Example 1.3.1. (Airline Data). Plot 1.3.2, which displays monthly
totals in thousands of international airline passengers from January
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1949 to December 1960, exemplifies the above mentioned dependence.
These Airline Data are taken from Box et al. (1994); a discussion can
be found in Brockwell and Davis (1991, Section 9.2).

Plot 1.3.2: Monthly totals in thousands of international airline pas-
sengers from January 1949 to December 1960.

1 /* airline_plot.sas */
2 TITLE1 ’Monthly totals from January 49 to December 60’;
3 TITLE2 ’Airline Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\airline.txt’;
8 INPUT y;
9 t=_N_;

10

11 /* Graphical options */
12 AXIS1 LABEL=NONE ORDER=(0 12 24 36 48 60 72 84 96 108 120 132 144)

↪→MINOR=(N=5);
13 AXIS2 LABEL=(ANGLE=90 ’total in thousands’);
14 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.2;
15
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16 /* Plot the data */
17 PROC GPLOT DATA=data1;
18 PLOT y*t / HAXIS=AXIS1 VAXIS=AXIS2;
19 RUN; QUIT;

In the first data step, the monthly passenger
totals are read into the variable y. To get a
time variable t, the temporarily created SAS
variable N is used; it counts the observations.

The passenger totals are plotted against t with
a line joining the data points, which are sym-
bolized by small dots. On the horizontal axis a
label is suppressed.

The variation of the data yt obviously increases with their height. The
logtransformed data xt = log(yt), displayed in the following figure,
however, show no dependence of variability from height.

Plot 1.3.3: Logarithm of Airline Data xt = log(yt).

1 /* airline_log.sas */
2 TITLE1 ’Logarithmic transformation’;
3 TITLE2 ’Airline Data’;
4

5 /* Read in the data and compute log-transformed data */
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6 DATA data1;
7 INFILE ’c\data\airline.txt’;
8 INPUT y;
9 t=_N_;

10 x=LOG(y);
11

12 /* Graphical options */
13 AXIS1 LABEL=NONE ORDER=(0 12 24 36 48 60 72 84 96 108 120 132 144)

↪→MINOR=(N=5);
14 AXIS2 LABEL=NONE;
15 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.2;
16

17 /* Plot log-transformed data */
18 PROC GPLOT DATA=data1;
19 PLOT x*t / HAXIS=AXIS1 VAXIS=AXIS2;
20 RUN; QUIT;

The plot of the log-transformed data is done in
the same manner as for the original data in Pro-
gram 1.3.2 (airline plot.sas). The only differ-

ences are the log-transformation by means of
the LOG function and the suppressed label on
the vertical axis.

The fact that taking the logarithm of data often reduces their vari-
ability, can be illustrated as follows. Suppose, for example, that
the data were generated by random variables, which are of the form
Yt = σtZt, where σt > 0 is a scale factor depending on t, and Zt,
t ∈ Z, are independent copies of a positive random variable Z with
variance 1. The variance of Yt is in this case σ2

t , whereas the variance
of log(Yt) = log(σt) + log(Zt) is a constant, namely the variance of
log(Z), if it exists.
A transformation of the data, which reduces the dependence of the
variability on their height, is called variance stabilizing . The loga-
rithm is a particular case of the general Box–Cox (1964) transforma-
tion Tλ of a time series (Yt), where the parameter λ ≥ 0 is chosen by
the statistician:

Tλ(Yt) :=

{
(Y λ

t − 1)/λ, Yt ≥ 0, λ > 0

log(Yt), Yt > 0, λ = 0.

Note that limλ↘0 Tλ(Yt) = T0(Yt) = log(Yt) if Yt > 0 (Exercise 1.22).
Popular choices of the parameter λ are 0 and 1/2. A variance stabi-
lizing transformation of the data, if necessary, usually precedes any
further data manipulation such as trend or seasonal adjustment.
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Exercises
1.1. Plot the Mitscherlich function for different values of β1, β2, β3
using PROC GPLOT.

1.2. Put in the logistic trend model (1.5) zt := 1/yt ∼ 1/E(Yt) =
1/flog(t), t = 1, . . . , n. Then we have the linear regression model
zt = a + bzt−1 + εt, where εt is the error variable. Compute the least
squares estimates â, b̂ of a, b and motivate the estimates β̂1 := − log(b̂),

β̂3 := (1− exp(−β̂1))/â as well as

β̂2 := exp
(n+ 1

2
β̂1 +

1

n

n∑
t=1

log
( β̂3

yt
− 1
))
,

proposed by Tintner (1958); see also Exercise 1.3.

1.3. The estimate β̂2 defined above suffers from the drawback that all
observations yt have to be strictly less than the estimate β̂3. Motivate
the following substitute of β̂2

β̃2 =
( n∑
t=1

β̂3 − yt
yt

exp
(
−β̂1t

))/ n∑
t=1

exp
(
−2β̂1t

)
as an estimate of the parameter β2 in the logistic trend model (1.5).

1.4. Show that in a linear regression model yt = β1xt+β2, t = 1, . . . , n,
the squared multiple correlation coefficient R2 based on the least
squares estimates β̂1, β̂2 and ŷt := β̂1xt + β̂2 is necessarily between
zero and one with R2 = 1 if and only if ŷt = yt, t = 0, . . . , n (see
(1.12)).

1.5. (Population2 Data) Table 1.3.1 lists total population numbers of
North Rhine-Westphalia between 1961 and 1979. Suppose a logistic
trend for these data and compute the estimators β̂1, β̂3 using PROC
REG. Since some observations exceed β̂3, use β̃2 from Exercise 1.3 and
do an ex post-analysis. Use PROC NLIN and do an ex post-analysis.
Compare these two procedures by their residual sums of squares.

1.6. (Income Data) Suppose an allometric trend function for the in-
come data in Example 1.1.3 and do a regression analysis. Plot the

data yt versus β̂2t
β̂1. To this end compute the R2-coefficient. Estimate

the parameters also with PROC NLIN and compare the results.
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Year t Total Population
in millions

1961 1 15.920
1963 2 16.280
1965 3 16.661
1967 4 16.835
1969 5 17.044
1971 6 17.091
1973 7 17.223
1975 8 17.176
1977 9 17.052
1979 10 17.002

Table 1.3.1: Population2 Data.

1.7. (Unemployed2 Data) Table 1.3.2 lists total numbers of unem-
ployed (in thousands) in West Germany between 1950 and 1993. Com-
pare a logistic trend function with an allometric one. Which one gives
the better fit?

1.8. Give an update equation for a simple moving average of (even)
order 2s.

1.9. (Public Expenditures Data) Table 1.3.3 lists West Germany’s
public expenditures (in billion D-Marks) between 1961 and 1990.
Compute simple moving averages of order 3 and 5 to estimate a pos-
sible trend. Plot the original data as well as the filtered ones and
compare the curves.

1.10. Check that the Census X–11 Program leads to a moving average
of length 165, 169, or 179 of the original data, depending on the length
of the Henderson moving average in step (6) of X–11.

1.11. (Unemployed Females Data) Use PROC X11 to analyze the
monthly unemployed females between ages 16 and 19 in the United
States from January 1961 to December 1985 (in thousands).

1.12. Show that the rank of a matrix A equals the rank of ATA.
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Year Unemployed

1950 1869
1960 271
1970 149
1975 1074
1980 889
1985 2304
1988 2242
1989 2038
1990 1883
1991 1689
1992 1808
1993 2270

Table 1.3.2: Unemployed2 Data.

Year Public Expenditures Year Public Expenditures

1961 113,4 1976 546,2
1962 129,6 1977 582,7
1963 140,4 1978 620,8
1964 153,2 1979 669,8
1965 170,2 1980 722,4
1966 181,6 1981 766,2
1967 193,6 1982 796,0
1968 211,1 1983 816,4
1969 233,3 1984 849,0
1970 264,1 1985 875,5
1971 304,3 1986 912,3
1972 341,0 1987 949,6
1973 386,5 1988 991,1
1974 444,8 1989 1018,9
1975 509,1 1990 1118,1

Table 1.3.3: Public Expenditures Data.
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1.13. The p + 1 columns of the design matrix X in (1.17) are linear
independent.

1.14. Let (cu) be the moving average derived by the best local poly-
nomial fit. Show that

(i) fitting locally a polynomial of degree 2 to five consecutive data
points leads to

(cu) =
1

35
(−3, 12, 17, 12,−3)T ,

(ii) the inverse matrix A−1 of an invertible m × m-matrix A =
(aij)1≤i,j≤m with the property that aij = 0, if i+j is odd, shares
this property,

(iii) (cu) is symmetric, i.e., c−u = cu.

1.15. (Unemployed1 Data) Compute a seasonal and trend adjusted
time series for the Unemployed1 Data in the building trade. To this
end compute seasonal differences and first order differences. Compare
the results with those of PROC X11.

1.16. Use the SAS function RANNOR to generate a time series Yt =
b0+b1t+εt, t = 1, . . . , 100, where b0, b1 6= 0 and the εt are independent
normal random variables with mean µ and variance σ2

1 if t ≤ 69 but
variance σ2

2 6= σ2
1 if t ≥ 70. Plot the exponentially filtered variables

Y ∗t for different values of the smoothing parameter α ∈ (0, 1) and
compare the results.

1.17. Compute under the assumptions of Corollary 1.2.9 the variance
of an exponentially filtered variable Y ∗t after a change point t = N
with σ2 := E(Yt−µ)2 for t < N and τ 2 := E(Yt−λ)2 for t ≥ N . What
is the limit for t→∞?

1.18. Show that one obtains the exponential smoother also as least
squares estimator of the weighted approach

∞∑
j=0

(1− α)j (Yt−j − µ)2 = min
µ

with Yt = Y0 for t < 0.
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1.19. (Female Unemployed Data) Compute exponentially smoothed
series of the Female Unemployed Data with different smoothing pa-
rameters α. Compare the results to those obtained with simple mov-
ing averages and X–11.

1.20. (Bankruptcy Data) Table 1.3.4 lists the percentages to annual
bancruptcies among all US companies between 1867 and 1932:

1.33 0.94 0.79 0.83 0.61 0.77 0.93 0.97 1.20 1.33
1.36 1.55 0.95 0.59 0.61 0.83 1.06 1.21 1.16 1.01
0.97 1.02 1.04 0.98 1.07 0.88 1.28 1.25 1.09 1.31
1.26 1.10 0.81 0.92 0.90 0.93 0.94 0.92 0.85 0.77
0.83 1.08 0.87 0.84 0.88 0.99 0.99 1.10 1.32 1.00
0.80 0.58 0.38 0.49 1.02 1.19 0.94 1.01 1.00 1.01
1.07 1.08 1.04 1.21 1.33 1.53

Table 1.3.4: Bankruptcy Data.

Compute and plot the empirical autocovariance function and the
empirical autocorrelation function using the SAS procedures PROC
ARIMA and PROC GPLOT.

1.21. Verify that the empirical correlation r(k) at lag k for the trend
yt = t, t = 1, . . . , n is given by

r(k) = 1− 3
k

n
+ 2

k(k2 − 1)

n(n2 − 1)
, k = 0, . . . , n.

Plot the correlogram for different values of n. This example shows,
that the correlogram has no interpretation for non-stationary pro-
cesses (see Exercise 1.20).

1.22. Show that

lim
λ↓0

Tλ(Yt) = T0(Yt) = log(Yt), Yt > 0

for the Box–Cox transformation Tλ.
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Chapter

2Models of Time Series

Each time series Y1, . . . , Yn can be viewed as a clipping from a sequence
of random variables . . . , Y−2, Y−1, Y0, Y1, Y2, . . . In the following we will
introduce several models for such a stochastic process Yt with index
set Z.

2.1 Linear Filters and Stochastic
Processes

For mathematical convenience we will consider complex valued ran-
dom variables Y , whose range is the set of complex numbers C =
{u + iv : u, v ∈ R}, where i =

√
−1. Therefore, we can decompose

Y as Y = Y(1) + iY(2), where Y(1) = Re(Y ) is the real part of Y and
Y(2) = Im(Y ) is its imaginary part. The random variable Y is called
integrable if the real valued random variables Y(1), Y(2) both have finite
expectations, and in this case we define the expectation of Y by

E(Y ) := E(Y(1)) + iE(Y(2)) ∈ C.

This expectation has, up to monotonicity, the usual properties such as
E(aY +bZ) = aE(Y )+bE(Z) of its real counterpart (see Exercise 2.1).
Here a and b are complex numbers and Z is a further integrable com-
plex valued random variable. In addition we have E(Y ) = E(Ȳ ),
where ā = u− iv denotes the conjugate complex number of a = u+ iv.
Since |a|2 := u2 + v2 = aā = āa, we define the variance of Y by

Var(Y ) := E((Y − E(Y ))(Y − E(Y ))) ≥ 0.

The complex random variable Y is called square integrable if this
number is finite. To carry the equation Var(X) = Cov(X,X) for a
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real random variable X over to complex ones, we define the covariance
of complex square integrable random variables Y, Z by

Cov(Y, Z) := E((Y − E(Y ))(Z − E(Z))).

Note that the covariance Cov(Y, Z) is no longer symmetric with re-
spect to Y and Z, as it is for real valued random variables, but it
satisfies Cov(Y, Z) = Cov(Z, Y ).
The following lemma implies that the Cauchy–Schwarz inequality car-
ries over to complex valued random variables.

Lemma 2.1.1. For any integrable complex valued random variable
Y = Y(1) + iY(2) we have

|E(Y )| ≤ E(|Y |) ≤ E(|Y(1)|) + E(|Y(2)|).

Proof. We write E(Y ) in polar coordinates E(Y ) = reiϑ, where r =
|E(Y )| and ϑ ∈ [0, 2π). Observe that

Re(e−iϑY ) = Re
(

(cos(ϑ)− i sin(ϑ))(Y(1) + iY(2))
)

= cos(ϑ)Y(1) + sin(ϑ)Y(2)

≤ (cos2(ϑ) + sin2(ϑ))1/2(Y 2
(1) + Y 2

(2))
1/2 = |Y |

by the Cauchy–Schwarz inequality for real numbers. Thus we obtain

|E(Y )| = r = E(e−iϑY )

= E
(

Re(e−iϑY )
)
≤ E(|Y |).

The second inequality of the lemma follows from |Y | = (Y 2
(1)+Y

2
(2))

1/2 ≤
|Y(1)|+ |Y(2)|.

The next result is a consequence of the preceding lemma and the
Cauchy–Schwarz inequality for real valued random variables.

Corollary 2.1.2. For any square integrable complex valued random
variable we have

|E(Y Z)| ≤ E(|Y ||Z|) ≤ E(|Y |2)1/2 E(|Z|2)1/2

and thus,
|Cov(Y, Z)| ≤ Var(Y )1/2 Var(Z)1/2.
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Stationary Processes
A stochastic process (Yt)t∈Z of square integrable complex valued ran-
dom variables is said to be (weakly) stationary if for any t1, t2, k ∈ Z

E(Yt1) = E(Yt1+k) and E(Yt1Y t2) = E(Yt1+kY t2+k).

The random variables of a stationary process (Yt)t∈Z have identical
means and variances. The autocovariance function satisfies moreover
for s, t ∈ Z

γ(t, s) : = Cov(Yt, Ys) = Cov(Yt−s, Y0) =: γ(t− s)

= Cov(Y0, Yt−s) = Cov(Ys−t, Y0) = γ(s− t),

and thus, the autocovariance function of a stationary process can be
viewed as a function of a single argument satisfying γ(t) = γ(−t), t ∈
Z.
A stationary process (εt)t∈Z of square integrable and uncorrelated real
valued random variables is called white noise i.e., Cov(εt, εs) = 0 for
t 6= s and there exist µ ∈ R, σ ≥ 0 such that

E(εt) = µ, E((εt − µ)2) = σ2, t ∈ Z.

In Section 1.2 we defined linear filters of a time series, which were
based on a finite number of real valued weights. In the following
we consider linear filters with an infinite number of complex valued
weights.
Suppose that (εt)t∈Z is a white noise and let (at)t∈Z be a sequence of
complex numbers satisfying

∑∞
t=−∞ |at| :=

∑
t≥0 |at|+

∑
t≥1 |a−t| <∞.

Then (at)t∈Z is said to be an absolutely summable (linear) filter and

Yt :=
∞∑

u=−∞
auεt−u :=

∑
u≥0

auεt−u +
∑
u≥1

a−uεt+u, t ∈ Z,

is called a general linear process .

Existence of General Linear Processes
We will show that

∑∞
u=−∞ |auεt−u| < ∞ with probability one for

t ∈ Z and, thus, Yt =
∑∞

u=−∞ auεt−u is well defined. Denote by
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L2 := L2(Ω,A,P) the set of all complex valued square integrable ran-
dom variables, defined on some probability space (Ω,A,P), and put
||Y ||2 := E(|Y |2)1/2, which is the L2-pseudonorm on L2.

Lemma 2.1.3. Let Xn, n ∈ N, be a sequence in L2 such that ||Xn+1−
Xn||2 ≤ 2−n for each n ∈ N. Then there exists X ∈ L2 such that
limn→∞Xn = X with probability one.

Proof. Write Xn =
∑

k≤n(Xk −Xk−1), where X0 := 0. By the mono-
tone convergence theorem, the Cauchy–Schwarz inequality and Corol-
lary 2.1.2 we have

E
(∑
k≥1

|Xk −Xk−1|
)

=
∑
k≥1

E(|Xk −Xk−1|) ≤
∑
k≥1

||Xk −Xk−1||2

≤ ||X1||2 +
∑
k≥1

2−k <∞.

This implies that
∑

k≥1 |Xk − Xk−1| < ∞ with probability one and
hence, the limit limn→∞

∑
k≤n(Xk − Xk−1) = limn→∞Xn = X exists

in C almost surely. Finally, we check that X ∈ L2:

E(|X|2) = E( lim
n→∞
|Xn|2)

≤ E
(

lim
n→∞

(∑
k≤n

|Xk −Xk−1|
)2)

= lim
n→∞

E
((∑

k≤n

|Xk −Xk−1|
)2)

= lim
n→∞

∑
k,j≤n

E(|Xk −Xk−1| |Xj −Xj−1|)

≤ lim
n→∞

∑
k,j≤n

||Xk −Xk−1||2 ||Xj −Xj−1||2

= lim
n→∞

(∑
k≤n

||Xk −Xk−1||2
)2

=
(∑
k≥1

||Xk −Xk−1||2
)2
<∞.



2.1 Linear Filters and Stochastic Processes 51

Theorem 2.1.4. The space (L2, || · ||2) is complete i.e., suppose that
Xn ∈ L2, n ∈ N, has the property that for arbitrary ε > 0 one can find
an integer N(ε) ∈ N such that ||Xn−Xm||2 < ε if n, m ≥ N(ε). Then
there exists a random variable X ∈ L2 such that limn→∞ ||X−Xn||2 =
0.

Proof. We can find integers n1 < n2 < . . . such that

||Xn −Xm||2 ≤ 2−k if n,m ≥ nk.

By Lemma 2.1.3 there exists a random variable X ∈ L2 such that
limk→∞Xnk = X with probability one. Fatou’s lemma implies

||Xn −X||22 = E(|Xn −X|2)

= E
(
lim inf
k→∞

|Xn −Xnk|2
)
≤ lim inf

k→∞
||Xn −Xnk||22.

The right-hand side of this inequality becomes arbitrarily small if we
choose n large enough, and thus we have limn→∞ ||Xn−X||22 = 0.

The following result implies in particular that a general linear process
is well defined.

Theorem 2.1.5. Suppose that (Zt)t∈Z is a complex valued stochastic
process such that supt E(|Zt|) < ∞ and let (at)t∈Z be an absolutely
summable filter. Then we have

∑
u∈Z |auZt−u| < ∞ with probability

one for t ∈ Z and, thus, Yt :=
∑

u∈Z auZt−u exists almost surely in C.
We have moreover E(|Yt|) <∞, t ∈ Z, and

(i) E(Yt) = limn→∞
∑n

u=−n au E(Zt−u), t ∈ Z,

(ii) E(|Yt −
∑n

u=−n auZt−u|) −→n→∞ 0.

If, in addition, supt E(|Zt|2) <∞, then we have E(|Yt|2) <∞, t ∈ Z,
and

(iii) ||Yt −
∑n

u=−n auZt−u||2 −→n→∞ 0.
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Proof. The monotone convergence theorem implies

E
(∑
u∈Z

|au| |Zt−u|
)

= lim
n→∞

E
( n∑
u=−n

|au||Zt−u|
)

= lim
n→∞

( n∑
u=−n

|au|E(|Zt−u|)
)

≤ lim
n→∞

( n∑
u=−n

|au|
)

sup
t∈Z

E(|Zt−u|) <∞

and, thus, we have
∑

u∈Z |au||Zt−u| < ∞ with probability one as
well as E(|Yt|) ≤ E(

∑
u∈Z |au||Zt−u|) < ∞, t ∈ Z. Put Xn(t) :=∑n

u=−n auZt−u. Then we have |Yt − Xn(t)| −→n→∞ 0 almost surely.
By the inequality |Yt − Xn(t)| ≤

∑
u∈Z |au||Zt−u|, n ∈ N, the domi-

nated convergence theorem implies (ii) and therefore (i):

|E(Yt)−
n∑

u=−n
au E(Zt−u)| = |E(Yt)− E(Xn(t))|

≤ E(|Yt −Xn(t)|) −→n→∞ 0.

Put K := supt E(|Zt|2) <∞. The Cauchy–Schwarz inequality implies
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for m,n ∈ N and ε > 0

0 ≤ E(|Xn+m(t)−Xn(t)|2)

= E


∣∣∣∣∣∣
n+m∑
|u|=n+1

auZt−u

∣∣∣∣∣∣
2


=
n+m∑
|u|=n+1

n+m∑
|w|=n+1

auāw E(Zt−uZ̄t−w)

≤
n+m∑
|u|=n+1

n+m∑
|w|=n+1

|au||aw|E(|Zt−u||Zt−w|)

≤
n+m∑
|u|=n+1

n+m∑
|w|=n+1

|au||aw|E(|Zt−u|2)1/2 E(|Zt−w|2)1/2

≤ K

 n+m∑
|u|=n+1

|au|

2

≤ K

∑
|u|≥n

|au|

2

< ε

if n is chosen sufficiently large. Theorem 2.1.4 now implies the exis-
tence of a random variable X(t) ∈ L2 with limn→∞ ||Xn(t)−X(t)||2 =
0. For the proof of (iii) it remains to show that X(t) = Yt almost
surely. Markov’s inequality implies

P{|Yt −Xn(t)| ≥ ε} ≤ ε−1 E(|Yt −Xn(t)|) −→n→∞ 0

by (ii), and Chebyshev’s inequality yields

P{|X(t)−Xn(t)| ≥ ε} ≤ ε−2||X(t)−Xn(t)||2 −→n→∞ 0

for arbitrary ε > 0. This implies

P{|Yt −X(t)| ≥ ε}
≤ P{|Yt −Xn(t)|+ |Xn(t)−X(t)| ≥ ε}
≤ P{|Yt −Xn(t)| ≥ ε/2}+ P{|X(t)−Xn(t)| ≥ ε/2} −→n→∞ 0

and thus Yt = X(t) almost surely, because Yt does not depend on n.
This completes the proof of Theorem 2.1.5.
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Theorem 2.1.6. Suppose that (Zt)t∈Z is a stationary process with
mean µZ := E(Z0) and autocovariance function γZ and let (at) be
an absolutely summable filter. Then Yt =

∑
u auZt−u, t ∈ Z, is also

stationary with

µY = E(Y0) =
(∑

u

au
)
µZ

and autocovariance function

γY (t) =
∑
u

∑
w

auāwγZ(t+ w − u).

Proof. Note that

E(|Zt|2) = E
(
|Zt − µZ + µZ |2

)
= E

(
(Zt − µZ + µZ)(Zt − µz + µz)

)
= E

(
|Zt − µZ |2

)
+ |µZ |2

= γZ(0) + |µZ |2

and, thus,
sup
t∈Z

E(|Zt|2) <∞.

We can, therefore, now apply Theorem 2.1.5. Part (i) of Theorem 2.1.5
immediately implies E(Yt) = (

∑
u au)µZ and part (iii) implies that the

Yt are square integrable and for t, s ∈ Z we get (see Exercise 2.16 for
the second equality)

γY (t− s) = E((Yt − µY )(Ys − µY ))

= lim
n→∞

Cov
( n∑
u=−n

auZt−u,
n∑

w=−n
awZs−w

)
= lim

n→∞

n∑
u=−n

n∑
w=−n

auāw Cov(Zt−u, Zs−w)

= lim
n→∞

n∑
u=−n

n∑
w=−n

auāwγZ(t− s+ w − u)

=
∑
u

∑
w

auāwγZ(t− s+ w − u).
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The covariance of Yt and Ys depends, therefore, only on the difference
t−s. Note that |γZ(t)| ≤ γZ(0) <∞ and thus,

∑
u

∑
w |auāwγZ(t−s+

w − u)| ≤ γZ(0)(
∑

u |au|)2 <∞, i.e., (Yt) is a stationary process.

The Covariance Generating Function
The covariance generating function of a stationary process with au-
tocovariance function γ is defined as the double series

G(z) :=
∑
t∈Z

γ(t)zt =
∑
t≥0

γ(t)zt +
∑
t≥1

γ(−t)z−t,

known as a Laurent series in complex analysis. We assume that there
exists a real number r > 1 such that G(z) is defined for all z ∈ C in
the annulus 1/r < |z| < r. The covariance generating function will
help us to compute the autocovariances of filtered processes.
Since the coefficients of a Laurent series are uniquely determined (see
e.g. Conway, 1978, Chapter V, 1.11), the covariance generating func-
tion of a stationary process is a constant function if and only if this
process is a white noise i.e., γ(t) = 0 for t 6= 0.

Theorem 2.1.7. Suppose that Yt =
∑

u auεt−u, t ∈ Z, is a general
linear process with

∑
u |au||zu| <∞, if r−1 < |z| < r for some r > 1.

Put σ2 := Var(ε0). The process (Yt) then has the covariance generat-
ing function

G(z) = σ2
(∑

u

auz
u
)(∑

u

āuz
−u
)
, r−1 < |z| < r.

Proof. Theorem 2.1.6 implies for t ∈ Z

Cov(Yt, Y0) =
∑
u

∑
w

auāwγε(t+ w − u)

= σ2
∑
u

auāu−t.
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This implies

G(z) = σ2
∑
t

∑
u

auāu−tz
t

= σ2
(∑

u

|au|2 +
∑
t≥1

∑
u

auāu−tz
t +

∑
t≤−1

∑
u

auāu−tz
t
)

= σ2
(∑

u

|au|2 +
∑
u

∑
t≤u−1

auātz
u−t +

∑
u

∑
t≥u+1

auātz
u−t
)

= σ2
∑
u

∑
t

auātz
u−t = σ2

(∑
u

auz
u
)(∑

t

ātz
−t
)
.

Example 2.1.8. Let (εt)t∈Z be a white noise with Var(ε0) =: σ2 >
0. The covariance generating function of the simple moving average
Yt =

∑
u auεt−u with a−1 = a0 = a1 = 1/3 and au = 0 elsewhere is

then given by

G(z) =
σ2

9
(z−1 + z0 + z1)(z1 + z0 + z−1)

=
σ2

9
(z−2 + 2z−1 + 3z0 + 2z1 + z2), z ∈ R.

Then the autocovariances are just the coefficients in the above series

γ(0) =
σ2

3
,

γ(1) = γ(−1) =
2σ2

9
,

γ(2) = γ(−2) =
σ2

9
,

γ(k) = 0 elsewhere.

This explains the name covariance generating function.

The Characteristic Polynomial
Let (au) be an absolutely summable filter. The Laurent series

A(z) :=
∑
u∈Z

auz
u



2.1 Linear Filters and Stochastic Processes 57

is called characteristic polynomial of (au). We know from complex
analysis that A(z) exists either for all z in some annulus r < |z| < R
or almost nowhere. In the first case the coefficients au are uniquely
determined by the function A(z) (see e.g. Conway, 1978, Chapter V,
1.11).
If, for example, (au) is absolutely summable with au = 0 for u ≥ 1,
then A(z) exists for all complex z such that |z| ≥ 1. If au = 0 for all
large |u|, then A(z) exists for all z 6= 0.

Inverse Filters
Let now (au) and (bu) be absolutely summable filters and denote by
Yt :=

∑
u auZt−u, the filtered stationary sequence, where (Zu)u∈Z is a

stationary process. Filtering (Yt)t∈Z by means of (bu) leads to∑
w

bwYt−w =
∑
w

∑
u

bwauZt−w−u =
∑
v

(
∑

u+w=v

bwau)Zt−v,

where cv :=
∑

u+w=v bwau, v ∈ Z, is an absolutely summable filter:∑
v

|cv| ≤
∑
v

∑
u+w=v

|bwau| = (
∑
u

|au|)(
∑
w

|bw|) <∞.

We call (cv) the product filter of (au) and (bu).

Lemma 2.1.9. Let (au) and (bu) be absolutely summable filters with
characteristic polynomials A1(z) and A2(z), which both exist on some
annulus r < |z| < R. The product filter (cv) = (

∑
u+w=v bwau) then

has the characteristic polynomial

A(z) = A1(z)A2(z).

Proof. By repeating the above arguments we obtain

A(z) =
∑
v

( ∑
u+w=v

bwau

)
zv = A1(z)A2(z).
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Suppose now that (au) and (bu) are absolutely summable filters with
characteristic polynomials A1(z) and A2(z), which both exist on some
annulus r < z < R, where they satisfy A1(z)A2(z) = 1. Since 1 =∑

v cvz
v if c0 = 1 and cv = 0 elsewhere, the uniquely determined

coefficients of the characteristic polynomial of the product filter of
(au) and (bu) are given by

∑
u+w=v

bwau =

{
1 if v = 0

0 if v 6= 0.

In this case we obtain for a stationary process (Zt) that almost surely

Yt =
∑
u

auZt−u and
∑
w

bwYt−w = Zt, t ∈ Z. (2.1)

The filter (bu) is, therefore, called the inverse filter of (au).

Causal Filters
An absolutely summable filter (au)u∈Z is called causal if au = 0 for
u < 0.

Lemma 2.1.10. Let a ∈ C. The filter (au) with a0 = 1, a1 = −a and
au = 0 elsewhere has an absolutely summable and causal inverse filter
(bu)u≥0 if and only if |a| < 1. In this case we have bu = au, u ≥ 0.

Proof. The characteristic polynomial of (au) is A1(z) = 1−az, z ∈ C.
Since the characteristic polynomial A2(z) of an inverse filter satisfies
A1(z)A2(z) = 1 on some annulus, we haveA2(z) = 1/(1−az). Observe
now that

1

1− az
=
∑
u≥0

auzu, if |z| < 1/|a|.

As a consequence, if |a| < 1, then A2(z) =
∑

u≥0 a
uzu exists for all

|z| < 1 and the inverse causal filter (au)u≥0 is absolutely summable,
i.e.,

∑
u≥0 |au| <∞. If |a| ≥ 1, then A2(z) =

∑
u≥0 a

uzu exists for all
|z| < 1/|a|, but

∑
u≥0 |a|u =∞, which completes the proof.

Theorem 2.1.11. Let a1, a2, . . . , ap ∈ C, ap 6= 0. The filter (au) with
coefficients a0 = 1, a1, . . . , ap and au = 0 elsewhere has an absolutely



2.1 Linear Filters and Stochastic Processes 59

summable and causal inverse filter if the p roots z1, . . . , zp ∈ C of
A(z) = 1 + a1z + a2z

2 + · · · + apz
p are outside of the unit circle i.e.,

|zi| > 1 for 1 ≤ i ≤ p.

Proof. We know from the Fundamental Theorem of Algebra that the
equation A(z) = 0 has exactly p roots z1, . . . , zp ∈ C (see e.g. Conway,
1978, Chapter IV, 3.5), which are all different from zero, since A(0) =
1. Hence we can write (see e.g. Conway, 1978, Chapter IV, 3.6)

A(z) = ap(z − z1) · · · (z − zp)

= c
(

1− z

z1

)(
1− z

z2

)
· · ·
(

1− z

zp

)
,

where c := ap(−1)pz1 · · · zp. In case of |zi| > 1 we can write for
|z| < |zi|

1

1− z
zi

=
∑
u≥0

( 1

zi

)u
zu, (2.2)

where the coefficients (1/zi)
u, u ≥ 0, are absolutely summable. In

case of |zi| < 1, we have for |z| > |zi|

1

1− z
zi

= − 1
z
zi

1

1− zi
z

= −zi
z

∑
u≥0

zui z
−u = −

∑
u≤−1

( 1

zi

)u
zu,

where the filter with coefficients −(1/zi)
u, u ≤ −1, is not a causal

one. In case of |zi| = 1, we have for |z| < 1

1

1− z
zi

=
∑
u≥0

( 1

zi

)u
zu,

where the coefficients (1/zi)
u, u ≥ 0, are not absolutely summable.

Since the coefficients of a Laurent series are uniquely determined, the
factor 1 − z/zi has an inverse 1/(1 − z/zi) =

∑
u≥0 buz

u on some
annulus with

∑
u≥0 |bu| <∞ if |zi| > 1. A small analysis implies that

this argument carries over to the product

1

A(z)
=

1

c
(

1− z
z1

)
. . .
(

1− z
zp

)
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which has an expansion 1/A(z) =
∑

u≥0 buz
u on some annulus with∑

u≥0 |bu| < ∞ if each factor has such an expansion, and thus, the
proof is complete.

Remark 2.1.12. Note that the roots z1, . . . , zp of A(z) = 1 + a1z +
· · ·+apzp are complex valued and thus, the coefficients bu of the inverse
causal filter will, in general, be complex valued as well. The preceding
proof shows, however, that if ap and each zi are real numbers, then
the coefficients bu, u ≥ 0, are real as well.
The preceding proof shows, moreover, that a filter (au) with complex
coefficients a0, a1, . . . , ap ∈ C and au = 0 elsewhere has an absolutely
summable inverse filter if no root z ∈ C of the equation A(z) =
a0 + a1z + · · ·+ apz

p = 0 has length 1 i.e., |z| 6= 1 for each root. The
additional condition |z| > 1 for each root then implies that the inverse
filter is a causal one.

Example 2.1.13. The filter with coefficients a0 = 1, a1 = −0.7 and
a2 = 0.1 has the characteristic polynomial A(z) = 1− 0.7z + 0.1z2 =
0.1(z − 2)(z − 5), with z1 = 2, z2 = 5 being the roots of A(z) =
0. Theorem 2.1.11 implies the existence of an absolutely summable
inverse causal filter, whose coefficients can be obtained by expanding
1/A(z) as a power series of z:

1

A(z)
=

1(
1− z

2

)(
1− z

5

) =

(∑
u≥0

(1

2

)u
zu

)(∑
w≥0

(1

5

)w
zw

)

=
∑
v≥0

∑
u+w=v

(1

2

)u(1

5

)w
zv

=
∑
v≥0

v∑
w=0

(1

2

)v−w(1

5

)w
zv

=
∑
v≥0

(1

2

)v 1−
(

2
5

)v+1

1− 2
5

zv =
∑
v≥0

10

3

((1

2

)v+1
−
(1

5

)v+1
)
zv.

The preceding expansion implies that bv := (10/3)(2−(v+1) − 5−(v+1)),
v ≥ 0, are the coefficients of the inverse causal filter.
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2.2 Moving Averages and Autoregressive
Processes

Let a1, . . . , aq ∈ R with aq 6= 0 and let (εt)t∈Z be a white noise. The
process

Yt := εt + a1εt−1 + · · ·+ aqεt−q

is said to be a moving average of order q, denoted by MA(q). Put
a0 = 1. Theorem 2.1.6 and 2.1.7 imply that a moving average Yt =∑q

u=0 auεt−u is a stationary process with covariance generating func-
tion

G(z) = σ2
( q∑
u=0

auz
u
)( q∑

w=0

awz
−w
)

= σ2
q∑

u=0

q∑
w=0

auawz
u−w

= σ2
q∑

v=−q

∑
u−w=v

auawz
u−w

= σ2
q∑

v=−q

( q−v∑
w=0

av+waw

)
zv, z ∈ C,

where σ2 = Var(ε0). The coefficients of this expansion provide the
autocovariance function γ(v) = Cov(Y0, Yv), v ∈ Z, which cuts off
after lag q.

Lemma 2.2.1. Suppose that Yt =
∑q

u=0 auεt−u, t ∈ Z, is a MA(q)-
process. Put µ := E(ε0) and σ2 := Var(ε0). Then we have

(i) E(Yt) = µ
∑q

u=0 au,

(ii) γ(v) = Cov(Yv, Y0) =


0, v > q,

σ2
q−v∑
w=0

av+waw, 0 ≤ v ≤ q,

γ(−v) = γ(v),

(iii) Var(Y0) = γ(0) = σ2∑q
w=0 a

2
w,
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(iv) ρ(v) =
γ(v)

γ(0)
=


0, v > q,( q−v∑
w=0

av+waw

)/(∑q
w=0 a

2
w

)
, 0 < v ≤ q,

1, v = 0,
ρ(−v) = ρ(v).

Example 2.2.2. The MA(1)-process Yt = εt + aεt−1 with a 6= 0 has
the autocorrelation function

ρ(v) =


1, v = 0

a/(1 + a2), v = ±1

0 elsewhere.

Since a/(1 + a2) = (1/a)/(1 + (1/a)2), the autocorrelation functions
of the two MA(1)-processes with parameters a and 1/a coincide. We
have, moreover, |ρ(1)| ≤ 1/2 for an arbitrary MA(1)-process and thus,
a large value of the empirical autocorrelation function r(1), which
exceeds 1/2 essentially, might indicate that an MA(1)-model for a
given data set is not a correct assumption.

Invertible Processes
Example 2.2.2 shows that a MA(q)-process is not uniquely determined
by its autocorrelation function. In order to get a unique relationship
between moving average processes and their autocorrelation function,
Box and Jenkins introduced the condition of invertibility. This is
useful for estimation procedures, since the coefficients of an MA(q)-
process will be estimated later by the empirical autocorrelation func-
tion, see Section 2.3.
The MA(q)-process Yt =

∑q
u=0 auεt−u, with a0 = 1 and aq 6= 0, is

said to be invertible if all q roots z1, . . . , zq ∈ C of A(z) =
∑q

u=0 auz
u

are outside of the unit circle i.e., if |zi| > 1 for 1 ≤ i ≤ q. Theorem
2.1.11 and representation (2.1) imply that the white noise process (εt),
pertaining to an invertible MA(q)-process Yt =

∑q
u=0 auεt−u, can be

obtained by means of an absolutely summable and causal filter (bu)u≥0
via

εt =
∑
u≥0

buYt−u, t ∈ Z,
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with probability one. In particular the MA(1)-process Yt = εt− aεt−1
is invertible iff |a| < 1, and in this case we have by Lemma 2.1.10 with
probability one

εt =
∑
u≥0

auYt−u, t ∈ Z.

Autoregressive Processes
A real valued stochastic process (Yt) is said to be an autoregressive
process of order p, denoted by AR(p) if there exist a1, . . . , ap ∈ R with
ap 6= 0, and a white noise (εt) such that

Yt = a1Yt−1 + · · ·+ apYt−p + εt, t ∈ Z. (2.3)

The value of an AR(p)-process at time t is, therefore, regressed on its
own past p values plus a random shock.

The Stationarity Condition
While by Theorem 2.1.6 MA(q)-processes are automatically station-
ary, this is not true for AR(p)-processes (see Exercise 2.28). The fol-
lowing result provides a sufficient condition on the constants a1, . . . , ap
implying the existence of a uniquely determined stationary solution
(Yt) of (2.3).

Theorem 2.2.3. The AR(p)-equation (2.3) with the given constants
a1, . . . , ap and white noise (εt)t∈Z has a stationary solution (Yt)t∈Z if
all p roots of the equation 1− a1z − a2z

2 − · · · − apzp = 0 are outside
of the unit circle. In this case, the stationary solution is almost surely
uniquely determined by

Yt :=
∑
u≥0

buεt−u, t ∈ Z,

where (bu)u≥0 is the absolutely summable inverse causal filter of c0 =
1, cu = −au, u = 1, . . . , p and cu = 0 elsewhere.

Proof. The existence of an absolutely summable causal filter follows
from Theorem 2.1.11. The stationarity of Yt =

∑
u≥0 buεt−u is a con-

sequence of Theorem 2.1.6, and its uniqueness follows from

εt = Yt − a1Yt−1 − · · · − apYt−p, t ∈ Z,
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and equation (2.1) on page 58.

The condition that all roots of the characteristic equation of an AR(p)-
process Yt =

∑p
u=1 auYt−u + εt are outside of the unit circle i.e.,

1− a1z − a2z
2 − · · · − apzp 6= 0 for |z| ≤ 1, (2.4)

will be referred to in the following as the stationarity condition for an
AR(p)-process.
An AR(p) process satisfying the stationarity condition can be inter-
preted as a MA(∞) process.
Note that a stationary solution (Yt) of (2.1) exists in general if no root
zi of the characteristic equation lies on the unit sphere. If there are
solutions in the unit circle, then the stationary solution is noncausal,
i.e., Yt is correlated with future values of εs, s > t. This is frequently
regarded as unnatural.

Example 2.2.4. The AR(1)-process Yt = aYt−1 + εt, t ∈ Z, with
a 6= 0 has the characteristic equation 1 − az = 0 with the obvious
solution z1 = 1/a. The process (Yt), therefore, satisfies the stationar-
ity condition iff |z1| > 1 i.e., iff |a| < 1. In this case we obtain from
Lemma 2.1.10 that the absolutely summable inverse causal filter of
a0 = 1, a1 = −a and au = 0 elsewhere is given by bu = au, u ≥ 0,
and thus, with probability one

Yt =
∑
u≥0

buεt−u =
∑
u≥0

auεt−u.

Denote by σ2 the variance of ε0. From Theorem 2.1.6 we obtain the
autocovariance function of (Yt)

γ(s) =
∑
u

∑
w

bubw Cov(ε0, εs+w−u)

=
∑
u≥0

bubu−s Cov(ε0, ε0)

= σ2as
∑
u≥s

a2(u−s) = σ2 as

1− a2 , s = 0, 1, 2, . . .
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and γ(−s) = γ(s). In particular we obtain γ(0) = σ2/(1 − a2) and
thus, the autocorrelation function of (Yt) is given by

ρ(s) = a|s|, s ∈ Z.

The autocorrelation function of an AR(1)-process Yt = aYt−1 + εt
with |a| < 1 therefore decreases at an exponential rate. Its sign is
alternating if a ∈ (−1, 0).

Plot 2.2.1: Autocorrelation functions of AR(1)-processes Yt = aYt−1 +
εt with different values of a.

1 /* ar1_autocorrelation.sas */
2 TITLE1 ’Autocorrelation functions of AR(1)-processes’;
3

4 /* Generate data for different autocorrelation functions */
5 DATA data1;
6 DO a=-0.7, 0.5, 0.9;
7 DO s=0 TO 20;
8 rho=a**s;
9 OUTPUT;
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10 END;
11 END;
12

13 /* Graphical options */
14 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.3 L=1;
15 SYMBOL2 C=GREEN V=DOT I=JOIN H=0.3 L=2;
16 SYMBOL3 C=GREEN V=DOT I=JOIN H=0.3 L=33;
17 AXIS1 LABEL=(’s’);
18 AXIS2 LABEL=(F=CGREEK ’r’ F=COMPLEX H=1 ’a’ H=2 ’(s)’);
19 LEGEND1 LABEL=(’a=’) SHAPE=SYMBOL(10,0.6);
20

21 /* Plot autocorrelation functions */
22 PROC GPLOT DATA=data1;
23 PLOT rho*s=a / HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGEND1 VREF=0;
24 RUN; QUIT;

The data step evaluates rho for three differ-
ent values of a and the range of s from 0
to 20 using two loops. The plot is gener-
ated by the procedure GPLOT. The LABEL op-
tion in the AXIS2 statement uses, in addition
to the greek font CGREEK, the font COMPLEX

assuming this to be the default text font
(GOPTION FTEXT=COMPLEX). The SHAPE op-
tion SHAPE=SYMBOL(10,0.6) in the LEGEND
statement defines width and height of the sym-
bols presented in the legend.

The following figure illustrates the significance of the stationarity con-
dition |a| < 1 of an AR(1)-process. Realizations Yt = aYt−1 + εt, t =
1, . . . , 10, are displayed for a = 0.5 and a = 1.5, where ε1, ε2, . . . , ε10
are independent standard normal in each case and Y0 is assumed to
be zero. While for a = 0.5 the sample path follows the constant
zero closely, which is the expectation of each Yt, the observations Yt
decrease rapidly in case of a = 1.5.
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Plot 2.2.2: Realizations of the AR(1)-processes Yt = 0.5Yt−1 + εt and
Yt = 1.5Yt−1 + εt, t = 1, . . . , 10, with εt independent standard normal
and Y0 = 0.

1 /* ar1_plot.sas */
2 TITLE1 ’Realizations of AR(1)-processes’;
3

4 /* Generated AR(1)-processes */
5 DATA data1;
6 DO a=0.5, 1.5;
7 t=0; y=0; OUTPUT;
8 DO t=1 TO 10;
9 y=a*y+RANNOR(1);

10 OUTPUT;
11 END;
12 END;
13

14 /* Graphical options */
15 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.4 L=1;
16 SYMBOL2 C=GREEN V=DOT I=JOIN H=0.4 L=2;
17 AXIS1 LABEL=(’t’) MINOR=NONE;
18 AXIS2 LABEL=(’Y’ H=1 ’t’);
19 LEGEND1 LABEL=(’a=’) SHAPE=SYMBOL(10,0.6);
20

21 /* Plot the AR(1)-processes */
22 PROC GPLOT DATA=data1(WHERE=(t>0));
23 PLOT y*t=a / HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGEND1;
24 RUN; QUIT;
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The data are generated within two loops, the
first one over the two values for a. The vari-
able y is initialized with the value 0 correspond-
ing to t=0. The realizations for t=1, ...,
10 are created within the second loop over t
and with the help of the function RANNOR which
returns pseudo random numbers distributed as
standard normal. The argument 1 is the initial
seed to produce a stream of random numbers.
A positive value of this seed always produces
the same series of random numbers, a nega-
tive value generates a different series each time

the program is submitted. A value of y is calcu-
lated as the sum of a times the actual value of
y and the random number and stored in a new
observation. The resulting data set has 22 ob-
servations and 3 variables (a, t and y).
In the plot created by PROC GPLOT the ini-
tial observations are dropped using the WHERE
data set option. Only observations fulfilling the
condition t>0 are read into the data set used
here. To suppress minor tick marks between
the integers 0,1, ...,10 the option MINOR
in the AXIS1 statement is set to NONE.

The Yule–Walker Equations
The Yule–Walker equations entail the recursive computation of the
autocorrelation function ρ of an AR(p)-process satisfying the station-
arity condition (2.4).

Lemma 2.2.5. Let Yt =
∑p

u=1 auYt−u+εt be an AR(p)-process, which
satisfies the stationarity condition (2.4). Its autocorrelation function
ρ then satisfies for s = 1, 2, . . . the recursion

ρ(s) =

p∑
u=1

auρ(s− u), (2.5)

known as Yule–Walker equations.

Proof. Put µ := E(Y0) and ν := E(ε0). Recall that Yt =
∑p

u=1 auYt−u+
εt, t ∈ Z and taking expectations on both sides µ =

∑p
u=1 auµ + ν.

Combining both equations yields

Yt − µ =

p∑
u=1

au(Yt−u − µ) + εt − ν, t ∈ Z. (2.6)

By multiplying equation (2.6) with Yt−s − µ for s > 0 and taking
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expectations again we obtain

γ(s) = E((Yt − µ)(Yt−s − µ))

=

p∑
u=1

au E((Yt−u − µ)(Yt−s − µ)) + E((εt − ν)(Yt−s − µ))

=

p∑
u=1

auγ(s− u).

for the autocovariance function γ of (Yt). The final equation fol-
lows from the fact that Yt−s and εt are uncorrelated for s > 0. This
is a consequence of Theorem 2.2.3, by which almost surely Yt−s =∑

u≥0 buεt−s−u with an absolutely summable causal filter (bu) and
thus, Cov(Yt−s, εt) =

∑
u≥0 bu Cov(εt−s−u, εt) = 0, see Theorem 2.1.5

and Exercise 2.16. Dividing the above equation by γ(0) now yields
the assertion.

Since ρ(−s) = ρ(s), equations (2.5) can be represented as
ρ(1)
ρ(2)
ρ(3)

...
ρ(p)

 =


1 ρ(1) ρ(2) . . . ρ(p− 1)
ρ(1) 1 ρ(1) ρ(p− 2)
ρ(2) ρ(1) 1 ρ(p− 3)

... . . . ...
ρ(p− 1) ρ(p− 2) ρ(p− 3) . . . 1



a1
a2
a3
...
ap


(2.7)

This matrix equation offers an estimator of the coefficients a1, . . . , ap
by replacing the autocorrelations ρ(j) by their empirical counterparts
r(j), 1 ≤ j ≤ p. Equation (2.7) then formally becomes r = Ra,
where r = (r(1), . . . , r(p))T , a = (a1, . . . , ap)

T and

R :=


1 r(1) r(2) . . . r(p− 1)
r(1) 1 r(1) . . . r(p− 2)

...
...

r(p− 1) r(p− 2) r(p− 3) . . . 1

 .

If the p×p-matrix R is invertible, we can rewrite the formal equation
r = Ra as R−1r = a, which motivates the estimator

â := R−1r (2.8)

of the vector a = (a1, . . . , ap)
T of the coefficients.
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The Partial Autocorrelation Coefficients
We have seen that the autocorrelation function ρ(k) of an MA(q)-
process vanishes for k > q, see Lemma 2.2.1. This is not true for an
AR(p)-process, whereas the partial autocorrelation coefficients will
share this property. Note that the correlation matrix

Pk : =
(

Corr(Yi, Yj)
)

1≤i,j≤k

=


1 ρ(1) ρ(2) . . . ρ(k − 1)
ρ(1) 1 ρ(1) ρ(k − 2)
ρ(2) ρ(1) 1 ρ(k − 3)

... . . . ...
ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . 1

 (2.9)

is positive semidefinite for any k ≥ 1. If we suppose that Pk is positive
definite, then it is invertible, and the equationρ(1)

...
ρ(k)

 = Pk

ak1
...
akk

 (2.10)

has the unique solution

ak :=

ak1
...
akk

 = P−1
k

ρ(1)
...

ρ(k)

 .

The number akk is called partial autocorrelation coefficient at lag
k, denoted by α(k), k ≥ 1. Observe that for k ≥ p the vector
(a1, . . . , ap, 0, . . . , 0) ∈ Rk, with k − p zeros added to the vector of
coefficients (a1, . . . , ap), is by the Yule–Walker equations (2.5) a solu-
tion of the equation (2.10). Thus we have α(p) = ap, α(k) = 0 for
k > p. Note that the coefficient α(k) also occurs as the coefficient

of Yn−k in the best linear one-step forecast
∑k

u=0 cuYn−u of Yn+1, see
equation (2.27) in Section 2.3.
If the empirical counterpart Rk of Pk is invertible as well, then

âk := R−1
k rk,
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with rk := (r(1), . . . , r(k))T , is an obvious estimate of ak. The k-th
component

α̂(k) := âkk (2.11)

of âk = (âk1, . . . , âkk) is the empirical partial autocorrelation coef-
ficient at lag k. It can be utilized to estimate the order p of an
AR(p)-process, since α̂(p) ≈ α(p) = ap is different from zero, whereas
α̂(k) ≈ α(k) = 0 for k > p should be close to zero.

Example 2.2.6. The Yule–Walker equations (2.5) for an AR(2)-
process Yt = a1Yt−1 + a2Yt−2 + εt are for s = 1, 2

ρ(1) = a1 + a2ρ(1), ρ(2) = a1ρ(1) + a2

with the solutions

ρ(1) =
a1

1− a2
, ρ(2) =

a2
1

1− a2
+ a2.

and thus, the partial autocorrelation coefficients are

α(1) = ρ(1),

α(2) = a2,

α(j) = 0, j ≥ 3.

The recursion (2.5) entails the computation of ρ(s) for an arbitrary s
from the two values ρ(1) and ρ(2).
The following figure displays realizations of the AR(2)-process Yt =
0.6Yt−1 − 0.3Yt−2 + εt for 1 ≤ t ≤ 200, conditional on Y−1 = Y0 = 0.
The random shocks εt are iid standard normal. The corresponding
empirical partial autocorrelation function is shown in Plot 2.2.4.
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Plot 2.2.3: Realization of the AR(2)-process Yt = 0.6Yt−1−0.3Yt−2+εt,
conditional on Y−1 = Y0 = 0. The εt, 1 ≤ t ≤ 200, are iid standard
normal.

1 /* ar2_plot.sas */
2 TITLE1 ’Realisation of an AR(2)-process’;
3

4 /* Generated AR(2)-process */
5 DATA data1;
6 t=-1; y=0; OUTPUT;
7 t=0; y1=y; y=0; OUTPUT;
8 DO t=1 TO 200;
9 y2=y1;

10 y1=y;
11 y=0.6*y1-0.3*y2+RANNOR(1);
12 OUTPUT;
13 END;
14

15 /* Graphical options */
16 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.3;
17 AXIS1 LABEL=(’t’);
18 AXIS2 LABEL=(’Y’ H=1 ’t’);
19

20 /* Plot the AR(2)-processes */
21 PROC GPLOT DATA=data1(WHERE=(t>0));
22 PLOT y*t / HAXIS=AXIS1 VAXIS=AXIS2;
23 RUN; QUIT;
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The two initial values of y are defined and
stored in an observation by the OUTPUT state-
ment. The second observation contains an ad-
ditional value y1 for yt−1. Within the loop the

values y2 (for yt−2), y1 and y are updated
one after the other. The data set used by
PROC GPLOT again just contains the observa-
tions with t > 0.

Plot 2.2.4: Empirical partial autocorrelation function of the AR(2)-
data in Plot 2.2.3.

1 /* ar2_epa.sas */
2 TITLE1 ’Empirical partial autocorrelation function’;
3 TITLE2 ’of simulated AR(2)-process data’;
4 /* Note that this program requires data1 generated by the previous

↪→program (ar2_plot.sas) */
5

6 /* Compute partial autocorrelation function */
7 PROC ARIMA DATA=data1(WHERE=(t>0));
8 IDENTIFY VAR=y NLAG=50 OUTCOV=corr NOPRINT;
9

10 /* Graphical options */
11 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.7;
12 AXIS1 LABEL=(’k’);
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13 AXIS2 LABEL=(’a(k)’);
14

15 /* Plot autocorrelation function */
16 PROC GPLOT DATA=corr;
17 PLOT PARTCORR*LAG / HAXIS=AXIS1 VAXIS=AXIS2 VREF=0;
18 RUN; QUIT;

This program requires to be submitted to SAS
for execution within a joint session with Pro-
gram 2.2.3 (ar2 plot.sas), because it uses the
temporary data step data1 generated there.
Otherwise you have to add the block of state-
ments to this program concerning the data step.
Like in Program 1.3.1 (sunspot correlogram.sas)

the procedure ARIMA with the IDENTIFY state-
ment is used to create a data set. Here we are
interested in the variable PARTCORR containing
the values of the empirical partial autocorrela-
tion function from the simulated AR(2)-process
data. This variable is plotted against the lag
stored in variable LAG.

ARMA-Processes
Moving averages MA(q) and autoregressive AR(p)-processes are spe-
cial cases of so called autoregressive moving averages. Let (εt)t∈Z be a
white noise, p, q ≥ 0 integers and a0, . . . , ap, b0, . . . , bq ∈ R. A real val-
ued stochastic process (Yt)t∈Z is said to be an autoregressive moving
average process of order p, q, denoted by ARMA(p, q), if it satisfies
the equation

Yt = a1Yt−1 + a2Yt−2 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q. (2.12)

An ARMA(p, 0)-process with p ≥ 1 is obviously an AR(p)-process,
whereas an ARMA(0, q)-process with q ≥ 1 is a moving average
MA(q). The polynomials

A(z) := 1− a1z − · · · − apzp (2.13)

and
B(z) := 1 + b1z + · · ·+ bqz

q, (2.14)

are the characteristic polynomials of the autoregressive part and of
the moving average part of an ARMA(p, q)-process (Yt), which we
can represent in the form

Yt − a1Yt−1 − · · · − apYt−p = εt + b1εt−1 + · · ·+ bqεt−q.
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Denote by Zt the right-hand side of the above equation i.e., Zt :=
εt + b1εt−1 + · · · + bqεt−q. This is a MA(q)-process and, therefore,
stationary by Theorem 2.1.6. If all p roots of the equation A(z) =
1− a1z− · · · − apzp = 0 are outside of the unit circle, then we deduce
from Theorem 2.1.11 that the filter c0 = 1, cu = −au, u = 1, . . . , p,
cu = 0 elsewhere, has an absolutely summable causal inverse filter
(du)u≥0. Consequently we obtain from the equation Zt = Yt−a1Yt−1−
· · · − apYt−p and (2.1) on page 58 that with b0 = 1, bw = 0 if w > q

Yt =
∑
u≥0

duZt−u =
∑
u≥0

du(εt−u + b1εt−1−u + · · ·+ bqεt−q−u)

=
∑
u≥0

∑
w≥0

dubwεt−w−u =
∑
v≥0

( ∑
u+w=v

dubw

)
εt−v

=
∑
v≥0

(min(v,q)∑
w=0

bwdv−w

)
εt−v =:

∑
v≥0

αvεt−v

is the almost surely uniquely determined stationary solution of the
ARMA(p, q)-equation (2.12) for a given white noise (εt) .
The condition that all p roots of the characteristic equation A(z) =
1 − a1z − a2z

2 − · · · − apzp = 0 of the ARMA(p, q)-process (Yt) are
outside of the unit circle will again be referred to in the following as
the stationarity condition (2.4).
The MA(q)-process Zt = εt + b1εt−1 + · · · + bqεt−q is by definition
invertible if all q roots of the polynomial B(z) = 1+b1z+· · ·+bqzq are
outside of the unit circle. Theorem 2.1.11 and equation (2.1) imply in
this case the existence of an absolutely summable causal filter (gu)u≥0
such that with a0 = −1

εt =
∑
u≥0

guZt−u =
∑
u≥0

gu(Yt−u − a1Yt−1−u − · · · − apYt−p−u)

= −
∑
v≥0

(min(v,p)∑
w=0

awgv−w

)
Yt−v.

In this case the ARMA(p, q)-process (Yt) is said to be invertible.
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The Autocovariance Function of an ARMA-Process
In order to deduce the autocovariance function of an ARMA(p, q)-
process (Yt), which satisfies the stationarity condition (2.4), we com-
pute at first the absolutely summable coefficients

αv =

min(q,v)∑
w=0

bwdv−w, v ≥ 0,

in the above representation Yt =
∑

v≥0 αvεt−v. The characteristic
polynomial D(z) of the absolutely summable causal filter (du)u≥0 co-
incides by Lemma 2.1.9 for 0 < |z| < 1 with 1/A(z), where A(z)
is given in (2.13). Thus we obtain with B(z) as given in (2.14) for
0 < |z| < 1, where we set this time a0 := −1 to simplify the following
formulas,

A(z)(B(z)D(z)) = B(z)

⇔
(
−

p∑
u=0

auz
u
)(∑

v≥0

αvz
v
)

=

q∑
w=0

bwz
w

⇔
∑
w≥0

(
−
∑

u+v=w

auαv

)
zw =

∑
w≥0

bwz
w

⇔
∑
w≥0

(
−

w∑
u=0

auαw−u

)
zw =

∑
w≥0

bwz
w

⇔



α0 = 1

αw −
w∑
u=1

auαw−u = bw for 1 ≤ w ≤ p

αw −
p∑

u=1

auαw−u = bw for w > p with bw = 0 for w > q.

(2.15)

Example 2.2.7. For the ARMA(1, 1)-process Yt− aYt−1 = εt + bεt−1
with |a| < 1 we obtain from (2.15)

α0 = 1, α1 − a = b, αw − aαw−1 = 0. w ≥ 2,
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This implies α0 = 1, αw = aw−1(b+ a), w ≥ 1, and, hence,

Yt = εt + (b+ a)
∑
w≥1

aw−1εt−w.

Theorem 2.2.8. Suppose that Yt =
∑p

u=1 auYt−u+
∑q

v=0 bvεt−v, b0 :=
1, is an ARMA(p, q)-process, which satisfies the stationarity condition
(2.4). Its autocovariance function γ then satisfies the recursion

γ(s)−
p∑

u=1

auγ(s− u) = σ2
q∑
v=s

bvαv−s, 0 ≤ s ≤ q,

γ(s)−
p∑

u=1

auγ(s− u) = 0, s ≥ q + 1, (2.16)

where αv, v ≥ 0, are the coefficients in the representation Yt =∑
v≥0 αvεt−v, which we computed in (2.15) and σ2 is the variance of

ε0.

Consequently the autocorrelation function ρ of the ARMA(p, q) pro-
cess (Yt) satisfies

ρ(s) =

p∑
u=1

auρ(s− u), s ≥ q + 1,

which coincides with the autocorrelation function of the stationary
AR(p)-process Xt =

∑p
u=1 auXt−u + εt, c.f. Lemma 2.2.5.

Proof of Theorem 2.2.8. Put µ := E(Y0) and ν := E(ε0). Recall that
Yt =

∑p
u=1 auYt−u +

∑q
v=0 bvεt−v, t ∈ Z and taking expectations on

both sides µ =
∑p

u=1 auµ +
∑q

v=0 bvν. Combining both equations
yields

Yt − µ =

p∑
u=1

au(Yt−u − µ) +

q∑
v=0

bv(εt−v − ν), t ∈ Z.

Multiplying both sides with Yt−s−µ, s ≥ 0, and taking expectations,
we obtain

Cov(Yt−s, Yt) =

p∑
u=1

au Cov(Yt−s, Yt−u) +

q∑
v=0

bv Cov(Yt−s, εt−v),
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which implies

γ(s)−
p∑

u=1

auγ(s− u) =

q∑
v=0

bv Cov(Yt−s, εt−v).

From the representation Yt−s =
∑

w≥0 αwεt−s−w and Theorem 2.1.5
we obtain

Cov(Yt−s, εt−v) =
∑
w≥0

αw Cov(εt−s−w, εt−v) =

{
0 if v < s

σ2αv−s if v ≥ s.

This implies

γ(s)−
p∑

u=1

auγ(s− u) =

q∑
v=s

bv Cov(Yt−s, εt−v)

=

{
σ2∑q

v=s bvαv−s if s ≤ q

0 if s > q,

which is the assertion.

Example 2.2.9. For the ARMA(1, 1)-process Yt− aYt−1 = εt + bεt−1
with |a| < 1 we obtain from Example 2.2.7 and Theorem 2.2.8 with
σ2 = Var(ε0)

γ(0)− aγ(1) = σ2(1 + b(b+ a)), γ(1)− aγ(0) = σ2b,

and thus

γ(0) = σ2 1 + 2ab+ b2

1− a2 , γ(1) = σ2 (1 + ab)(a+ b)

1− a2 .

For s ≥ 2 we obtain from (2.16)

γ(s) = aγ(s− 1) = · · · = as−1γ(1).
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Plot 2.2.5: Autocorrelation functions of ARMA(1, 1)-processes with
a = 0.8/− 0.8, b = 0.5/0/− 0.5 and σ2 = 1.

1 /* arma11_autocorrelation.sas */
2 TITLE1 ’Autocorrelation functions of ARMA(1,1)-processes’;
3

4 /* Compute autocorrelations functions for different ARMA(1,1)-
↪→processes */

5 DATA data1;
6 DO a=-0.8, 0.8;
7 DO b=-0.5, 0, 0.5;
8 s=0; rho=1;
9 q=COMPRESS(’(’ || a || ’,’ || b || ’)’);

10 OUTPUT;
11 s=1; rho=(1+a*b)*(a+b)/(1+2*a*b+b*b);
12 q=COMPRESS(’(’ || a || ’,’ || b || ’)’);
13 OUTPUT;
14 DO s=2 TO 10;
15 rho=a*rho;
16 q=COMPRESS(’(’ || a || ’,’ || b || ’)’);
17 OUTPUT;
18 END;
19 END;
20 END;
21

22 /* Graphical options */
23 SYMBOL1 C=RED V=DOT I=JOIN H=0.7 L=1;
24 SYMBOL2 C=YELLOW V=DOT I=JOIN H=0.7 L=2;
25 SYMBOL3 C=BLUE V=DOT I=JOIN H=0.7 L=33;
26 SYMBOL4 C=RED V=DOT I=JOIN H=0.7 L=3;
27 SYMBOL5 C=YELLOW V=DOT I=JOIN H=0.7 L=4;
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28 SYMBOL6 C=BLUE V=DOT I=JOIN H=0.7 L=5;
29 AXIS1 LABEL=(F=CGREEK ’r’ F=COMPLEX ’(k)’);
30 AXIS2 LABEL=(’lag k’) MINOR=NONE;
31 LEGEND1 LABEL=(’(a,b)=’) SHAPE=SYMBOL(10,0.8);
32

33 /* Plot the autocorrelation functions */
34 PROC GPLOT DATA=data1;
35 PLOT rho*s=q / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;
36 RUN; QUIT;

In the data step the values of the autocorrela-
tion function belonging to an ARMA(1, 1) pro-
cess are calculated for two different values of a,
the coefficient of the AR(1)-part, and three dif-
ferent values of b, the coefficient of the MA(1)-
part. Pure AR(1)-processes result for the value
b=0. For the arguments (lags) s=0 and s=1
the computation is done directly, for the rest up

to s=10 a loop is used for a recursive compu-
tation. For the COMPRESS statement see Pro-
gram 1.1.3 (logistic.sas).

The second part of the program uses PROC
GPLOT to plot the autocorrelation function, us-
ing known statements and options to customize
the output.

ARIMA-Processes
Suppose that the time series (Yt) has a polynomial trend of degree d.
Then we can eliminate this trend by considering the process (∆dYt),
obtained by d times differencing as described in Section 1.2. If the
filtered process (∆dYd) is an ARMA(p, q)-process satisfying the sta-
tionarity condition (2.4), the original process (Yt) is said to be an
autoregressive integrated moving average of order p, d, q, denoted by
ARIMA(p, d, q). In this case constants a1, . . . , ap, b0 = 1, b1, . . . , bq ∈
R exist such that

∆dYt =

p∑
u=1

au∆
dYt−u +

q∑
w=0

bwεt−w, t ∈ Z,

where (εt) is a white noise.

Example 2.2.10. An ARIMA(1, 1, 1)-process (Yt) satisfies

∆Yt = a∆Yt−1 + εt + bεt−1, t ∈ Z,

where |a| < 1, b 6= 0 and (εt) is a white noise, i.e.,

Yt − Yt−1 = a(Yt−1 − Yt−2) + εt + bεt−1, t ∈ Z.
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This implies Yt = (a + 1)Yt−1 − aYt−2 + εt + bεt−1. Note that the
characteristic polynomial of the AR-part of this ARMA(2, 1)-process
has a root 1 and the process is, thus, not stationary.
A random walk Xt = Xt−1+εt is obviously an ARIMA(0, 1, 0)-process.

Consider Yt = St + Rt, t ∈ Z, where the random component (Rt)
is a stationary process and the seasonal component (St) is periodic
of length s, i.e., St = St+s = St+2s = . . . for t ∈ Z. Then the pro-
cess (Yt) is in general not stationary, but Y ∗t := Yt − Yt−s is. If this
seasonally adjusted process (Y ∗t ) is an ARMA(p, q)-process satisfy-
ing the stationarity condition (2.4), then the original process (Yt) is
called a seasonal ARMA(p, q)-process with period length s, denoted by
SARMAs(p, q). One frequently encounters a time series with a trend
as well as a periodic seasonal component. A stochastic process (Yt)
with the property that (∆d(Yt − Yt−s)) is an ARMA(p, q)-process is,
therefore, called a SARIMA(p, d, q)-process. This is a quite common
assumption in practice.

Cointegration
In the sequel we will frequently use the notation that a time series
(Yt) is I(d), d = 0, 1, . . . if the sequence of differences (∆dYt) of order
d is a stationary process. By the difference ∆0Yt of order zero we
denote the undifferenced process Yt, t ∈ Z.
Suppose that the two time series (Yt) and (Zt) satisfy

Yt = aWt + εt, Zt = Wt + δt, t ∈ Z,

for some real number a 6= 0, where (Wt) is I(1), and (εt), (δt) are
uncorrelated white noise processes, i.e., Cov(εt, δs) = 0, t, s ∈ Z, and
both are uncorrelated to (Wt).
Then (Yt) and (Zt) are both I(1), but

Xt := Yt − aZt = εt − aδt, t ∈ Z,

is I(0).
The fact that the combination of two nonstationary series yields a sta-
tionary process arises from a common component (Wt), which is I(1).
More generally, two I(1) series (Yt), (Zt) are said to be cointegrated
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(of order 1), if there exist constants µ, α1, α2 with α1, α2 different
from 0, such that the process

Xt = µ+ α1Yt + α2Zt, t ∈ Z, (2.17)

is I(0). Without loss of generality, we can choose α1 = 1 in this case.
Such cointegrated time series are often encountered in macroecono-
mics (Granger, 1981; Engle and Granger, 1987). Consider, for exam-
ple, prices for the same commodity in different parts of a country.
Principles of supply and demand, along with the possibility of arbi-
trage, mean that, while the process may fluctuate more-or-less ran-
domly, the distance between them will, in equilibrium, be relatively
constant (typically about zero).
The link between cointegration and error correction can vividly be de-
scribed by the humorous tale of the drunkard and his dog, c.f. Murray
(1994). In the same way a drunkard seems to follow a random walk
an unleashed dog wanders aimlessly. We can, therefore, model their
ways by random walks

Yt = Yt−1 + εt and

Zt = Zt−1 + δt,

where the individual single steps (εt), (δt) of man and dog are uncor-
related white noise processes. Random walks are not stationary, since
their variances increase, and so both processes (Yt) and (Zt) are not
stationary.
And if the dog belongs to the drunkard? We assume the dog to
be unleashed and thus, the distance Yt − Zt between the drunk and
his dog is a random variable. It seems reasonable to assume that
these distances form a stationary process, i.e., that (Yt) and (Zt) are
cointegrated with constants α1 = 1 and α2 = −1.
Cointegration requires that both variables in question be I(1), but
that a linear combination of them be I(0). This means that the first
step is to figure out if the series themselves are I(1), typically by using
unit root tests. If one or both are not I(1), cointegration of order 1 is
not an option.
Whether two processes (Yt) and (Zt) are cointegrated can be tested
by means of a linear regression approach. This is based on the coin-
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tegration regression
Yt = β0 + β1Zt + εt,

where (εt) is a stationary process and β0, β1 ∈ R are the cointegration
constants.
One can use the ordinary least squares estimates β̂0, β̂1 of the target
parameters β0, β1, which satisfy

n∑
t=1

(
Yt − β̂0 − β̂1Zt

)2
= min

β0,β1∈R

n∑
t=1

(
Yt − β0 − β1Zt

)2
,

and one checks, whether the estimated residuals

ε̂t = Yt − β̂0 − β̂1Zt

are generated by a stationary process.
A general strategy for examining cointegrated series can now be sum-
marized as follows:

(i) Determine that the two series are I(1) by standard unit root
tests such as Dickey–Fuller or augmented Dickey–Fuller.

(ii) Compute ε̂t = Yt − β̂0 − β̂1Zt using ordinary least squares.

(iii) Examine ε̂t for stationarity, using for example the Phillips–
Ouliaris test.

Example 2.2.11. (Hog Data) Quenouille (1968) Hog Data list the
annual hog supply and hog prices in the U.S. between 1867 and 1948.
Do they provide a typical example of cointegrated series? A discussion
can be found in Box and Tiao (1977).
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Plot 2.2.6: Hog Data: hog supply and hog prices.

1 /* hog.sas */
2 TITLE1 ’Hog supply, hog prices and differences’;
3 TITLE2 ’Hog Data (1867-1948)’;
4 /* Note that this program requires the macro mkfields.sas to be

↪→submitted before this program */
5

6 /* Read in the two data sets */
7 DATA data1;
8 INFILE ’c:\data\hogsuppl.txt’;
9 INPUT supply @@;

10

11 DATA data2;
12 INFILE ’c:\data\hogprice.txt’;
13 INPUT price @@;
14

15 /* Merge data sets, generate year and compute differences */
16 DATA data3;
17 MERGE data1 data2;
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18 year=_N_+1866;
19 diff=supply-price;
20

21 /* Graphical options */
22 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;
23 AXIS1 LABEL=(ANGLE=90 ’h o g s u p p l y’);
24 AXIS2 LABEL=(ANGLE=90 ’h o g p r i c e s’);
25 AXIS3 LABEL=(ANGLE=90 ’d i f f e r e n c e s’);
26

27 /* Generate three plots */
28 GOPTIONS NODISPLAY;
29 PROC GPLOT DATA=data3 GOUT=abb;
30 PLOT supply*year / VAXIS=AXIS1;
31 PLOT price*year / VAXIS=AXIS2;
32 PLOT diff*year / VAXIS=AXIS3 VREF=0;
33 RUN;
34

35 /* Display them in one output */
36 GOPTIONS DISPLAY;
37 PROC GREPLAY NOFS IGOUT=abb TC=SASHELP.TEMPLT;
38 TEMPLATE=V3;
39 TREPLAY 1:GPLOT 2:GPLOT1 3:GPLOT2;
40 RUN; DELETE _ALL_; QUIT;

The supply data and the price data read in
from two external files are merged in data3.
Year is an additional variable with values
1867, 1868, . . . , 1932. By PROC GPLOT hog
supply, hog prices and their differences
diff are plotted in three different plots stored
in the graphics catalog abb. The horizontal
line at the zero level is plotted by the option

VREF=0. The plots are put into a common
graphic using PROC GREPLAY and the tem-
plate V3. Note that the labels of the vertical
axes are spaced out as SAS sets their charac-
ters too close otherwise.

For the program to work properly the macro mk-
fields.sas has to be submitted beforehand.

Hog supply (=: yt) and hog price (=: zt) obviously increase in time t
and do, therefore, not seem to be realizations of stationary processes;
nevertheless, as they behave similarly, a linear combination of both
might be stationary. In this case, hog supply and hog price would be
cointegrated.
This phenomenon can easily be explained as follows. A high price zt
at time t is a good reason for farmers to breed more hogs, thus leading
to a large supply yt+1 in the next year t+1. This makes the price zt+1
fall with the effect that farmers will reduce their supply of hogs in the
following year t + 2. However, when hogs are in short supply, their
price zt+2 will rise etc. There is obviously some error correction mech-
anism inherent in these two processes, and the observed cointegration
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helps us to detect its existence.
Before we can examine the data for cointegration however, we have
to check that our two series are I(1). We will do this by the Dickey-
Fuller-test which can assume three different models for the series Yt:

∆Yt = γYt−1 + εt (2.18)

∆Yt = a0 + γYt−1 + εt (2.19)

∆Yt = a0 + a2t+ γYt−1 + εt, (2.20)

where (εt) is a white noise with expectation 0. Note that (2.18) is a
special case of (2.19) and (2.19) is a special case of (2.20). Note also
that one can bring (2.18) into an AR(1)-form by putting a1 = γ + 1
and (2.19) into an AR(1)-form with an intercept term a0 (so called
drift term) by also putting a1 = γ + 1. (2.20) can be brought into an
AR(1)-form with a drift and trend term a0 + a2t.
The null hypothesis of the Dickey-Fuller-test is now that γ = 0. The
corresponding AR(1)-processes would then not be stationary, since the
characteristic polynomial would then have a root on the unit circle,
a so called unit root . Note that in the case (2.20) the series Yt is
I(2) under the null hypothesis and two I(2) time series are said to be
cointegrated of order 2, if there is a linear combination of them which
is stationary as in (2.17).
The Dickey-Fuller-test now estimates a1 = γ+ 1 by â1, obtained from
an ordinary regression and checks for γ = 0 by computing the test
statistic

x := nγ̂ := n(â1 − 1), (2.21)

where n is the number of observations on which the regression is
based (usually one less than the initial number of observations). The
test statistic follows the so called Dickey-Fuller distribution which
cannot be explicitly given but has to be obtained by Monte-Carlo and
bootstrap methods. P-values derived from this distribution can for
example be obtained in SAS by the function PROBDF, see the following
program. For more information on the Dickey-Fuller-test, especially
the extension of the augmented Dickey-Fuller-test with more than one
autoregressing variable in (2.18) to (2.20) we refer to Enders (2004,
Chapter 4).
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Testing for Unit Roots by Dickey-Fuller
Hog Data (1867-1948)

Beob. xsupply xprice psupply pprice

1 0.12676 . 0.70968 .
2 . 0.86027 . 0.88448

Listing 2.2.7: Dickey–Fuller test of Hog Data.

1 /* hog_dickey_fuller.sas */
2 TITLE1 ’Testing for Unit Roots by Dickey-Fuller’;
3 TITLE2 ’Hog Data (1867-1948)’;
4 /* Note that this program needs data3 generated by the previous

↪→program (hog.sas) */
5

6 /* Prepare data set for regression */
7 DATA regression;
8 SET data3;
9 supply1=LAG(supply);

10 price1=LAG(price);
11

12 /* Estimate gamma for both series by regression */
13 PROC REG DATA=regression OUTEST=est;
14 MODEL supply=supply1 / NOINT NOPRINT;
15 MODEL price=price1 / NOINT NOPRINT;
16

17 /* Compute test statistics for both series */
18 DATA dickeyfuller1;
19 SET est;
20 xsupply= 81*(supply1-1);
21 xprice= 81*(price1-1);
22

23 /* Compute p-values for the three models */
24 DATA dickeyfuller2;
25 SET dickeyfuller1;
26 psupply=PROBDF(xsupply,81,1,"RZM");
27 pprice=PROBDF(xprice,81,1,"RZM");
28

29 /* Print the results */
30 PROC PRINT DATA=dickeyfuller2(KEEP= xsupply xprice psupply pprice);
31 RUN; QUIT;

Unfortunately the Dickey-Fuller-test is only im-
plemented in the High Performance Forecast-
ing module of SAS (PROC HPFDIAG). Since
this is no standard module we compute it by
hand here.

In the first DATA step the data are prepared
for the regression by lagging the corresponding

variables. Assuming model (2.18), the regres-
sion is carried out for both series, suppressing
an intercept by the option NOINT. The results
are stored in est. If model (2.19) is to be inves-
tigated, NOINT is to be deleted, for model (2.19)
the additional regression variable year has to
be inserted.
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In the next step the corresponding test statistics
are calculated by (2.21). The factor 81 comes
from the fact that the hog data contain 82 obser-
vations and the regression is carried out with 81
observations.
After that the corresponding p-values are com-
puted. The function PROBDF, which completes
this task, expects four arguments. First the test
statistic, then the sample size of the regres-
sion, then the number of autoregressive vari-
ables in (2.18) to (2.20) (in our case 1) and

a three-letter specification which of the mod-
els (2.18) to (2.20) is to be tested. The first let-
ter states, in which way γ is estimated (R for re-
gression, S for a studentized test statistic which
we did not explain) and the last two letters state
the model (ZM (Zero mean) for (2.18), SM (sin-
gle mean) for (2.19), TR (trend) for (2.20)).

In the final step the test statistics and corre-
sponding p-values are given to the output win-
dow.

The p-values do not reject the hypothesis that we have two I(1) series
under model (2.18) at the 5%-level, since they are both larger than
0.05 and thus support that γ = 0.
Since we have checked that both hog series can be regarded as I(1)
we can now check for cointegration.

The AUTOREG Procedure

Dependent Variable supply

Ordinary Least Squares Estimates

SSE 338324.258 DFE 80
MSE 4229 Root MSE 65.03117
SBC 924.172704 AIC 919.359266
Regress R-Square 0.3902 Total R-Square 0.3902
Durbin-Watson 0.5839

Phillips-Ouliaris
Cointegration Test

Lags Rho Tau

1 -28.9109 -4.0142

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 515.7978 26.6398 19.36 <.0001
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price 1 0.2059 0.0288 7.15 <.0001

Listing 2.2.8: Phillips–Ouliaris test for cointegration of Hog Data.

1 /* hog_cointegration.sas */
2 TITLE1 ’Testing for cointegration’;
3 TITLE2 ’Hog Data (1867-1948)’;
4 /* Note that this program needs data3 generated by the previous

↪→program (hog.sas) */
5

6 /* Compute Phillips-Ouliaris-test for cointegration */
7 PROC AUTOREG DATA=data3;
8 MODEL supply=price / STATIONARITY=(PHILLIPS);
9 RUN; QUIT;

The procedure AUTOREG (for autoregressive
models) uses data3 from Program 2.2.6
(hog.sas). In the MODEL statement a regres-
sion from supply on price is defined and the

option STATIONARITY=(PHILLIPS) makes
SAS calculate the statistics of the Phillips–
Ouliaris test for cointegration.

The output of the above program contains some characteristics of the
cointegration regression, the Phillips-Ouliaris test statistics and the
regression coefficients with their t-ratios. The Phillips-Ouliaris test
statistics need some further explanation.
The hypothesis of the Phillips–Ouliaris cointegration test is no coin-
tegration. Unfortunately SAS does not provide the p-value, but only
the values of the test statistics denoted by RHO and TAU. Tables of
critical values of these test statistics can be found in Phillips and Ou-
liaris (1990). Note that in the original paper the two test statistics

are denoted by Ẑα and Ẑt. The hypothesis is to be rejected if RHO or
TAU are below the critical value for the desired type I level error α.
For this one has to differentiate between the following cases:

(i) If model (2.18) with γ = 0 has been validated for both series,
then use the following table for critical values of RHO and TAU.
This is the so-called standard case.

α 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO -10.74 -11.57 -12.54 -13.81 -15.64 -18.88 -22.83
TAU -2.26 -2.35 -2.45 -2.58 -2.76 -3.05 -3.39
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(ii) If model (2.19) with γ = 0 has been validated for both series,
then use the following table for critical values of RHO and TAU.
This case is referred to as demeaned .

α 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO -14.91 -15.93 -17.04 -18.48 -20.49 -23.81 -28.32
TAU -2.86 -2.96 -3.07 -3.20 -3.37 -3.64 -3.96

(iii) If model (2.20) with γ = 0 has been validated for both series,
then use the following table for critical values of RHO and TAU.
This case is said to be demeaned and detrended .

α 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO -20.79 -21.81 -23.19 -24.75 -27.09 -30.84 -35.42
TAU -3.33 -3.42 -3.52 -3.65 -3.80 -4.07 -4.36

In our example, the RHO-value equals −28.9109 and the TAU-value
is −4.0142. Since we have seen that model (2.18) with γ = 0 is
appropriate for our series, we have to use the standard table. Both
test statistics are smaller than the critical values of −15.64 and −2.76
in the above table of the standard case and, thus, lead to a rejection
of the null hypothesis of no cointegration at the 5%-level.
For further information on cointegration we refer to the time series
book by Hamilton (1994, Chapter 19) and the one by Enders (2004,
Chapter 6).

ARCH- and GARCH-Processes
In particular the monitoring of stock prices gave rise to the idea that
the volatility of a time series (Yt) might not be a constant but rather
a random variable, which depends on preceding realizations. The
following approach to model such a change in volatility is due to Engle
(1982).
We assume the multiplicative model

Yt = σtZt, t ∈ Z,

where the Zt are independent and identically distributed random vari-
ables with

E(Zt) = 0 and E(Z2
t ) = 1, t ∈ Z.
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The scale σt is supposed to be a function of the past p values of the
series:

σ2
t = a0 +

p∑
j=1

ajY
2
t−j, t ∈ Z, (2.22)

where p ∈ {0, 1, . . . } and a0 > 0, aj ≥ 0, 1 ≤ j ≤ p − 1, ap > 0 are
constants.
The particular choice p = 0 yields obviously a white noise model for
(Yt). Common choices for the distribution of Zt are the standard
normal distribution or the (standardized) t-distribution, which in the
non-standardized form has the density

fm(x) :=
Γ((m+ 1)/2)

Γ(m/2)
√
πm

(
1 +

x2

m

)−(m+1)/2
, x ∈ R.

The number m ≥ 1 is the degree of freedom of the t-distribution. The
scale σt in the above model is determined by the past observations
Yt−1, . . . , Yt−p, and the innovation on this scale is then provided by
Zt. We assume moreover that the process (Yt) is a causal one in the
sense that Zt and Ys, s < t, are independent. Some autoregressive
structure is, therefore, inherent in the process (Yt). Conditional on
Yt−j = yt−j, 1 ≤ j ≤ p, the variance of Yt is a0 +

∑p
j=1 ajy

2
t−j and,

thus, the conditional variances of the process will generally be differ-
ent. The process Yt = σtZt is, therefore, called an autoregressive and
conditional heteroscedastic process of order p, ARCH(p)-process for
short.
If, in addition, the causal process (Yt) is stationary, then we obviously
have

E(Yt) = E(σt) E(Zt) = 0

and

σ2 := E(Y 2
t ) = E(σ2

t ) E(Z2
t )

= a0 +

p∑
j=1

aj E(Y 2
t−j)

= a0 + σ2
p∑
j=1

aj,
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which yields

σ2 =
a0

1−
∑p

j=1 aj
.

A necessary condition for the stationarity of the process (Yt) is, there-
fore, the inequality

∑p
j=1 aj < 1. Note, moreover, that the preceding

arguments immediately imply that the Yt and Ys are uncorrelated for
different values s < t

E(YsYt) = E(σsZsσtZt) = E(σsZsσt) E(Zt) = 0,

since Zt is independent of σt, σs and Zs. But they are not independent,
because Ys influences the scale σt of Yt by (2.22).
The following lemma is crucial. It embeds the ARCH(p)-processes to
a certain extent into the class of AR(p)-processes, so that our above
tools for the analysis of autoregressive processes can be applied here
as well.

Lemma 2.2.12. Let (Yt) be a stationary and causal ARCH(p)-process
with constants a0, a1, . . . , ap. If the process of squared random vari-
ables (Y 2

t ) is a stationary one, then it is an AR(p)-process:

Y 2
t = a1Y

2
t−1 + · · ·+ apY

2
t−p + εt,

where (εt) is a white noise with E(εt) = a0, t ∈ Z.

Proof. From the assumption that (Yt) is an ARCH(p)-process we ob-
tain

εt := Y 2
t −

p∑
j=1

ajY
2
t−j = σ2

tZ
2
t − σ2

t + a0 = a0 + σ2
t (Z

2
t − 1), t ∈ Z.

This implies E(εt) = a0 and

E((εt − a0)
2) = E(σ4

t ) E((Z2
t − 1)2)

= E
(

(a0 +

p∑
j=1

ajY
2
t−j)

2
)

E((Z2
t − 1)2) =: c,
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independent of t by the stationarity of (Y 2
t ). For h ∈ N the causality

of (Yt) finally implies

E((εt − a0)(εt+h − a0)) = E(σ2
t σ

2
t+h(Z

2
t − 1)(Z2

t+h − 1))

= E(σ2
t σ

2
t+h(Z

2
t − 1)) E(Z2

t+h − 1) = 0,

i.e., (εt) is a white noise with E(εt) = a0.

The process (Y 2
t ) satisfies, therefore, the stationarity condition (2.4)

if all p roots of the equation 1 −
∑p

j=1 ajz
j = 0 are outside of the

unit circle. Hence, we can estimate the order p using an estimate as
in (2.11) of the partial autocorrelation function of (Y 2

t ). The Yule–
Walker equations provide us, for example, with an estimate of the
coefficients a1, . . . , ap, which then can be utilized to estimate the ex-
pectation a0 of the error εt.
Note that conditional on Yt−1 = yt−1, . . . , Yt−p = yt−p, the distribution
of Yt = σtZt is a normal one if the Zt are normally distributed. In
this case it is possible to write down explicitly the joint density of
the vector (Yp+1, . . . , Yn), conditional on Y1 = y1, . . . , Yp = yp (Ex-
ercise 2.40). A numerical maximization of this density with respect
to a0, a1, . . . , ap then leads to a maximum likelihood estimate of the
vector of constants; see also Section 2.3.
A generalized ARCH-process, GARCH(p, q) (Bollerslev, 1986), adds
an autoregressive structure to the scale σt by assuming the represen-
tation

σ2
t = a0 +

p∑
j=1

ajY
2
t−j +

q∑
k=1

bkσ
2
t−k,

where the constants bk are nonnegative. The set of parameters aj, bk
can again be estimated by conditional maximum likelihood as before
if a parametric model for the distribution of the innovations Zt is
assumed.

Example 2.2.13. (Hongkong Data). The daily Hang Seng closing
index was recorded between July 16th, 1981 and September 30th,
1983, leading to a total amount of 552 observations pt. The daily log
returns are defined as

yt := log(pt)− log(pt−1),
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where we now have a total of n = 551 observations. The expansion
log(1 + ε) ≈ ε implies that

yt = log
(

1 +
pt − pt−1

pt−1

)
≈ pt − pt−1

pt−1
,

provided that pt−1 and pt are close to each other. In this case we can
interpret the return as the difference of indices on subsequent days,
relative to the initial one.

We use an ARCH(3) model for the generation of yt, which seems to
be a plausible choice by the partial autocorrelations plot. If one as-
sumes t-distributed innovations Zt, SAS estimates the distribution’s
degrees of freedom and displays the reciprocal in the TDFI-line, here
m = 1/0.1780 = 5.61 degrees of freedom. We obtain the estimates
a0 = 0.000214, a1 = 0.147593, a2 = 0.278166 and a3 = 0.157807. The
SAS output also contains some general regression model information
from an ordinary least squares estimation approach, some specific in-
formation for the (G)ARCH approach and as mentioned above the
estimates for the ARCH model parameters in combination with t ra-
tios and approximated p-values. The following plots show the returns
of the Hang Seng index, their squares and the autocorrelation func-
tion of the log returns, indicating a possible ARCH model, since the
values are close to 0. The pertaining partial autocorrelation function
of the squared process and the parameter estimates are also given.
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Plot 2.2.9: Log returns of Hang Seng index and their squares.

1 /* hongkong_plot.sas */
2 TITLE1 ’Daily log returns and their squares’;
3 TITLE2 ’Hongkong Data ’;
4

5 /* Read in the data, compute log return and their squares */
6 DATA data1;
7 INFILE ’c:\data\hongkong.txt’;
8 INPUT p@@;
9 t=_N_;

10 y=DIF(LOG(p));
11 y2=y**2;
12

13 /* Graphical options */
14 SYMBOL1 C=RED V=DOT H=0.5 I=JOIN L=1;
15 AXIS1 LABEL=(’y’ H=1 ’t’) ORDER=(-.12 TO .10 BY .02);
16 AXIS2 LABEL=(’y2’ H=1 ’t’);
17

18 /* Generate two plots */
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19 GOPTIONS NODISPLAY;
20 PROC GPLOT DATA=data1 GOUT=abb;
21 PLOT y*t / VAXIS=AXIS1;
22 PLOT y2*t / VAXIS=AXIS2;
23 RUN;
24

25 /* Display them in one output */
26 GOPTIONS DISPLAY;
27 PROC GREPLAY NOFS IGOUT=abb TC=SASHELP.TEMPLT;
28 TEMPLATE=V2;
29 TREPLAY 1:GPLOT 2:GPLOT1;
30 RUN; DELETE _ALL_; QUIT;

In the DATA step the observed values of the
Hang Seng closing index are read into the vari-
able p from an external file. The time index
variable t uses the SAS-variable N , and the
log transformed and differenced values of the
index are stored in the variable y, their squared

values in y2.
After defining different axis labels, two plots
are generated by two PLOT statements in PROC
GPLOT, but they are not displayed. By means of
PROC GREPLAY the plots are merged vertically
in one graphic.

Plot 2.2.10: Autocorrelations of log returns of Hang Seng index.
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Plot 2.2.10b: Partial autocorrelations of squares of log returns of Hang
Seng index.

The AUTOREG Procedure

Dependent Variable = Y

Ordinary Least Squares Estimates

SSE 0.265971 DFE 551
MSE 0.000483 Root MSE 0.021971
SBC -2643.82 AIC -2643.82
Reg Rsq 0.0000 Total Rsq 0.0000
Durbin-Watson 1.8540

NOTE: No intercept term is used. R-squares are redefined.

GARCH Estimates

SSE 0.265971 OBS 551
MSE 0.000483 UVAR 0.000515
Log L 1706.532 Total Rsq 0.0000
SBC -3381.5 AIC -3403.06
Normality Test 119.7698 Prob>Chi-Sq 0.0001

Variable DF B Value Std Error t Ratio Approx Prob

ARCH0 1 0.000214 0.000039 5.444 0.0001
ARCH1 1 0.147593 0.0667 2.213 0.0269
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ARCH2 1 0.278166 0.0846 3.287 0.0010
ARCH3 1 0.157807 0.0608 2.594 0.0095
TDFI 1 0.178074 0.0465 3.833 0.0001

Listing 2.2.10c: Parameter estimates in the ARCH(3)-model for stock
returns.

1 /* hongkong_pa.sas */
2 TITLE1 ’ARCH(3)-model’;
3 TITLE2 ’Hongkong Data’;
4 /* Note that this program needs data1 generated by the previous

↪→program (hongkong_plot.sas) */
5

6 /* Compute (partial) autocorrelation function */
7 PROC ARIMA DATA=data1;
8 IDENTIFY VAR=y NLAG=50 OUTCOV=data3;
9 IDENTIFY VAR=y2 NLAG=50 OUTCOV=data2;

10

11 /* Graphical options */
12 SYMBOL1 C=RED V=DOT H=0.5 I=JOIN;
13 AXIS1 LABEL=(ANGLE=90);
14

15 /* Plot autocorrelation function of supposed ARCH data */
16 PROC GPLOT DATA=data3;
17 PLOT corr*lag / VREF=0 VAXIS=AXIS1;
18 RUN;
19

20

21 /* Plot partial autocorrelation function of squared data */
22 PROC GPLOT DATA=data2;
23 PLOT partcorr*lag / VREF=0 VAXIS=AXIS1;
24 RUN;
25

26 /* Estimate ARCH(3)-model */
27 PROC AUTOREG DATA=data1;
28 MODEL y = / NOINT GARCH=(q=3) DIST=T;
29 RUN; QUIT;

To identify the order of a possibly underly-
ing ARCH process for the daily log returns
of the Hang Seng closing index, the empiri-
cal autocorrelation of the log returns, the em-
pirical partial autocorrelations of their squared
values, which are stored in the variable y2
of the data set data1 in Program 2.2.9
(hongkong plot.sas), are calculated by means
of PROC ARIMA and the IDENTIFY statement.
The subsequent procedure GPLOT displays
these (partial) autocorrelations. A horizontal
reference line helps to decide whether a value

is substantially different from 0.

PROC AUTOREG is used to analyze the
ARCH(3) model for the daily log returns. The
MODEL statement specifies the dependent vari-
able y. The option NOINT suppresses an in-
tercept parameter, GARCH=(q=3) selects the
ARCH(3) model and DIST=T determines a t
distribution for the innovations Zt in the model
equation. Note that, in contrast to our notation,
SAS uses the letter q for the ARCH model or-
der.
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2.3 Specification of ARMA-Models:
The Box–Jenkins Program

The aim of this section is to fit a time series model (Yt)t∈Z to a given
set of data y1, . . . , yn collected in time t. We suppose that the data
y1, . . . , yn are (possibly) variance-stabilized as well as trend or sea-
sonally adjusted. We assume that they were generated by clipping
Y1, . . . , Yn from an ARMA(p, q)-process (Yt)t∈Z, which we will fit to
the data in the following. As noted in Section 2.2, we could also fit
the model Yt =

∑
v≥0 αvεt−v to the data, where (εt) is a white noise.

But then we would have to determine infinitely many parameters αv,
v ≥ 0. By the principle of parsimony it seems, however, reasonable
to fit only the finite number of parameters of an ARMA(p, q)-process.
The Box–Jenkins program consists of four steps:

1. Order selection: Choice of the parameters p and q.

2. Estimation of coefficients: The coefficients of the AR part of
the model a1, . . . , ap and the MA part b1, . . . , bq are estimated.

3. Diagnostic check: The fit of the ARMA(p, q)-model with the
estimated coefficients is checked.

4. Forecasting: The prediction of future values of the original pro-
cess.

The four steps are discussed in the following. The application of the
Box–Jenkins Program is presented in a case study in Chapter 7.

Order Selection
The order q of a moving average MA(q)-process can be estimated
by means of the empirical autocorrelation function r(k) i.e., by the
correlogram. Part (iv) of Lemma 2.2.1 shows that the autocorrelation
function ρ(k) vanishes for k ≥ q + 1. This suggests to choose the
order q such that r(q) is clearly different from zero, whereas r(k) for
k ≥ q + 1 is quite close to zero. This, however, is obviously a rather
vague selection rule.
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The order p of an AR(p)-process can be estimated in an analogous way
using the empirical partial autocorrelation function α̂(k), k ≥ 1, as
defined in (2.11). Since α̂(p) should be close to the p-th coefficient ap
of the AR(p)-process, which is different from zero, whereas α̂(k) ≈ 0
for k > p, the above rule can be applied again with r replaced by α̂.
The choice of the orders p and q of an ARMA(p, q)-process is a bit
more challenging. In this case one commonly takes the pair (p, q),
minimizing some information function, which is based on an estimate
σ̂2
p,q of the variance of ε0.

Popular functions are Akaike’s Information Criterion

AIC(p, q) := log(σ̂2
p,q) + 2

p+ q

n
,

the Bayesian Information Criterion

BIC(p, q) := log(σ̂2
p,q) +

(p+ q) log(n)

n

and the Hannan–Quinn Criterion

HQ(p, q) := log(σ̂2
p,q) +

2(p+ q)c log(log(n))

n
with c > 1.

AIC and BIC are discussed in Brockwell and Davis (1991, Section
9.3) for Gaussian processes (Yt), where the joint distribution of an
arbitrary vector (Yt1, . . . , Ytk) with t1 < · · · < tk is multivariate nor-
mal, see below. For the HQ-criterion we refer to Hannan and Quinn
(1979). Note that the variance estimate σ̂2

p,q, which uses estimated
model parameters, discussed in the next section, will in general be-
come arbitrarily small as p + q increases. The additive terms in the
above criteria serve, therefore, as penalties for large values, thus help-
ing to prevent overfitting of the data by choosing p and q too large.
It can be shown that BIC and HQ lead under certain regularity con-
ditions to strongly consistent estimators of the model order. AIC has
the tendency not to underestimate the model order. Simulations point
to the fact that BIC is generally to be preferred for larger samples,
see Shumway and Stoffer (2006, Section 2.2).
More sophisticated methods for selecting the orders p and q of an
ARMA(p, q)-process are presented in Section 7.5 within the applica-
tion of the Box–Jenkins Program in a case study.
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Estimation of Coefficients
Suppose we fixed the order p and q of an ARMA(p, q)-process (Yt)t∈Z,
with Y1, . . . , Yn now modelling the data y1, . . . , yn. In the next step
we will derive estimators of the constants a1, . . . , ap, b1, . . . , bq in the
model

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q, t ∈ Z.

The Gaussian Model: Maximum Likelihood Estima-
tor
We assume first that (Yt) is a Gaussian process and thus, the joint
distribution of (Y1, . . . , Yn) is a n-dimensional normal distribution

P{Yi ≤ si, i = 1, . . . , n} =

∫ s1

−∞
. . .

∫ sn

−∞
ϕµ,Σ(x1, . . . , xn) dxn . . . dx1

for arbitrary s1, . . . , sn ∈ R. Here

ϕµ,Σ(x1, . . . , xn)

=
1

(2π)n/2(det Σ)1/2 ·

exp
(
− 1

2
((x1, . . . , xn)− µT )Σ−1((x1, . . . , xn)

T − µ)
)

is for arbitrary x1, . . . , xn ∈ R the density of the n-dimensional normal
distribution with mean vector µ = (µ, . . . , µ)T ∈ Rn and covariance
matrix Σ = (γ(i − j))1≤i,j≤n, denoted by N(µ,Σ), where µ = E(Y0)
and γ is the autocovariance function of the stationary process (Yt).
The number ϕµ,Σ(x1, . . . , xn) reflects the probability that the random
vector (Y1, . . . , Yn) realizes close to (x1, . . . , xn). Precisely, we have for
ε ↓ 0

P{Yi ∈ [xi − ε, xi + ε], i = 1, . . . , n}

=

∫ x1+ε

x1−ε
. . .

∫ xn+ε

xn−ε
ϕµ,Σ(z1, . . . , zn) dzn . . . dz1

≈ 2nεnϕµ,Σ(x1, . . . , xn).
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The likelihood principle is the fact that a random variable tends to
attain its most likely value and thus, if the vector (Y1, . . . , Yn) actually
attained the value (y1, . . . , yn), the unknown underlying mean vector
µ and covariance matrix Σ ought to be such that ϕµ,Σ(y1, . . . , yn)
is maximized. The computation of these parameters leads to the
maximum likelihood estimator of µ and Σ.
We assume that the process (Yt) satisfies the stationarity condition
(2.4), in which case Yt =

∑
v≥0 αvεt−v, t ∈ Z, is invertible, where (εt)

is a white noise and the coefficients αv depend only on a1, . . . , ap and
b1, . . . , bq. Consequently we have for s ≥ 0

γ(s) = Cov(Y0, Ys) =
∑
v≥0

∑
w≥0

αvαw Cov(ε−v, εs−w) = σ2
∑
v≥0

αvαs+v.

The matrix
Σ′ := σ−2Σ,

therefore, depends only on a1, . . . , ap and b1, . . . , bq.
We can write now the density ϕµ,Σ(x1, . . . , xn) as a function of ϑ :=
(σ2, µ, a1, . . . , ap, b1, . . . , bq) ∈ Rp+q+2 and (x1, . . . , xn) ∈ Rn

p(x1, . . . , xn|ϑ)

:= ϕµ,Σ(x1, . . . , xn)

= (2πσ2)−n/2(det Σ′)−1/2 exp
(
− 1

2σ2Q(ϑ|x1, . . . , xn)
)
,

where

Q(ϑ|x1, . . . , xn) := ((x1, . . . , xn)− µT )Σ′
−1

((x1, . . . , xn)
T − µ)

is a quadratic function. The likelihood function pertaining to the
outcome (y1, . . . , yn) is

L(ϑ|y1, . . . , yn) := p(y1, . . . , yn|ϑ).

A parameter ϑ̂ maximizing the likelihood function

L(ϑ̂|y1, . . . , yn) = sup
ϑ
L(ϑ|y1, . . . , yn),

is then a maximum likelihood estimator of ϑ.
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Due to the strict monotonicity of the logarithm, maximizing the like-
lihood function is in general equivalent to the maximization of the
loglikelihood function

l(ϑ|y1, . . . , yn) = logL(ϑ|y1, . . . , yn).

The maximum likelihood estimator ϑ̂ therefore satisfies

l(ϑ̂|y1, . . . , yn)

= sup
ϑ
l(ϑ|y1, . . . , yn)

= sup
ϑ

(
− n

2
log(2πσ2)− 1

2
log(det Σ′)− 1

2σ2Q(ϑ|y1, . . . , yn)

)
.

The computation of a maximizer is a numerical and usually computer
intensive problem. Some further insights are given in Section 7.5.

Example 2.3.1. The AR(1)-process Yt = aYt−1 + εt with |a| < 1 has
by Example 2.2.4 the autocovariance function

γ(s) = σ2 as

1− a2 , s ≥ 0,

and thus,

Σ′ =
1

1− a2


1 a a2 . . . an−1

a 1 a an−2

... . . . ...
an−1 an−2 an−3 . . . 1

 .

The inverse matrix is

Σ′
−1

=



1 −a 0 0 . . . 0
−a 1 + a2 −a 0 0
0 −a 1 + a2 −a 0
... . . . ...
0 . . . −a 1 + a2 −a
0 0 . . . 0 −a 1

 .
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Check that the determinant of Σ′−1 is det(Σ′−1) = 1−a2 = 1/ det(Σ′),
see Exercise 2.44. If (Yt) is a Gaussian process, then the likelihood
function of ϑ = (σ2, µ, a) is given by

L(ϑ|y1, . . . , yn) = (2πσ2)−n/2(1− a2)1/2 exp
(
− 1

2σ2Q(ϑ|y1, . . . , yn)
)
,

where

Q(ϑ|y1, . . . , yn)

= ((y1, . . . , yn)− µ)Σ′
−1

((y1, . . . , yn)− µ)T

= (y1 − µ)2 + (yn − µ)2 + (1 + a2)
n−1∑
i=2

(yi − µ)2

− 2a
n−1∑
i=1

(yi − µ)(yi+1 − µ).

Nonparametric Approach: Least Squares
If E(εt) = 0, then

Ŷt = a1Yt−1 + · · ·+ apYt−p + b1εt−1 + · · ·+ bqεt−q

would obviously be a reasonable one-step forecast of the ARMA(p, q)-
process

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q,

based on Yt−1, . . . , Yt−p and εt−1, . . . , εt−q. The prediction error is given
by the residual

Yt − Ŷt = εt.

Suppose that ε̂t is an estimator of εt, t ≤ n, which depends on the
choice of constants a1, . . . , ap, b1, . . . , bq and satisfies the recursion

ε̂t = yt − a1yt−1 − · · · − apyt−p − b1ε̂t−1 − · · · − bqε̂t−q.
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The function

S2(a1, . . . , ap, b1, . . . , bq)

=
n∑

t=−∞
ε̂2
t

=
n∑

t=−∞
(yt − a1yt−1 − · · · − apyt−p − b1ε̂t−1 − · · · − bqε̂t−q)2

is the residual sum of squares and the least squares approach suggests
to estimate the underlying set of constants by minimizers a1, . . . , ap
and b1, . . . , bq of S2. Note that the residuals ε̂t and the constants are
nested.
We have no observation yt available for t ≤ 0. But from the assump-
tion E(εt) = 0 and thus E(Yt) = 0, it is reasonable to backforecast yt
by zero and to put ε̂t := 0 for t ≤ 0, leading to

S2(a1, . . . , ap, b1, . . . , bq) =
n∑
t=1

ε̂2
t .

The estimated residuals ε̂t can then be computed from the recursion

ε̂1 = y1

ε̂2 = y2 − a1y1 − b1ε̂1

ε̂3 = y3 − a1y2 − a2y1 − b1ε̂2 − b2ε̂1 (2.23)
...

ε̂j = yj − a1yj−1 − · · · − apyj−p − b1ε̂j−1 − · · · − bqε̂j−q,

where j now runs from max{p, q}+ 1 to n.
For example for an ARMA(2, 3)–process we have

ε̂1 = y1

ε̂2 = y2 − a1y1 − b1ε̂1

ε̂3 = y3 − a1y2 − a2y1 − b1ε̂2 − b2ε̂1

ε̂4 = y4 − a1y3 − a2y2 − b1ε̂3 − b2ε̂2 − b3ε̂1

ε̂5 = y5 − a1y4 − a2y3 − b1ε̂4 − b2ε̂3 − b3ε̂2
...
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From step 4 in this iteration procedure the order (2, 3) has been at-
tained.
The coefficients a1, . . . , ap of a pure AR(p)-process can be estimated
directly, using the Yule–Walker equations as described in (2.8).

Diagnostic Check
Suppose that the orders p and q as well as the constants a1, . . . , ap
and b1, . . . , bq have been chosen in order to model an ARMA(p, q)-
process underlying the data. The Portmanteau-test of Box and Pierce
(1970) checks, whether the estimated residuals ε̂t, t = 1, . . . , n, behave
approximately like realizations from a white noise process. To this end
one considers the pertaining empirical autocorrelation function

r̂ε̂(k) :=

∑n−k
j=1 (ε̂j − ε̄)(ε̂j+k − ε̄)∑n

j=1(ε̂j − ε̄)2 , k = 1, . . . , n− 1, (2.24)

where ε̄ = n−1∑n
j=1 ε̂j, and checks, whether the values r̂ε(k) are suf-

ficiently close to zero. This decision is based on

Q(K) := n

K∑
k=1

r̂ε̂(k),

which follows asymptotically for n → ∞ and K not too large a χ2-
distribution with K − p − q degrees of freedom if (Yt) is actually
an ARMA(p, q)-process (see e.g. Brockwell and Davis (1991, Section
9.4)). The parameter K must be chosen such that the sample size n−k
in r̂ε(k) is large enough to give a stable estimate of the autocorrelation
function. The hypothesis H0 that the estimated residuals result from a
white noise process and therefore the ARMA(p, q)-model is rejected if
the p-value 1−χ2

K−p−q(Q(K)) is too small, since in this case the value

Q(K) is unexpectedly large. By χ2
K−p−q we denote the distribution

function of the χ2-distribution with K − p− q degrees of freedom. To
accelerate the convergence to the χ2

K−p−q distribution under the null
hypothesis of an ARMA(p, q)-process, one often replaces the Box–
Pierce statistic Q(K) by the Box–Ljung statistic (Ljung and Box,
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1978)

Q∗(K) := n
K∑
k=1

((
n+ 2

n− k

)1/2

r̂ε̂(k)

)2

= n(n+ 2)
K∑
k=1

1

n− k
r̂ε̂(k)

with weighted empirical autocorrelations.
Another method for diagnostic check is overfitting, which will be pre-
sented in Section 7.6 within the application of the Box–Jenkins Pro-
gram in a case study.

Forecasting
We want to determine weights c∗0, . . . , c

∗
n−1 ∈ R such that for h ∈ N

E
(
Yn+h − Ŷn+h

)
= min

c0,...,cn−1∈R
E

(Yn+h −
n−1∑
u=0

cuYn−u

)2
 ,

with Ŷn+h :=
∑n−1

u=0 c
∗
uYn−u. Then Ŷn+h with minimum mean squared

error is said to be a best (linear) h-step forecast of Yn+h, based on
Y1, . . . , Yn. The following result provides a sufficient condition for the
optimality of weights.

Lemma 2.3.2. Let (Yt) be an arbitrary stochastic process with finite
second moments and h ∈ N. If the weights c∗0, . . . , c

∗
n−1 have the prop-

erty that

E

(
Yi

(
Yn+h −

n−1∑
u=0

c∗uYn−u

))
= 0, i = 1, . . . , n, (2.25)

then Ŷn+h :=
∑n−1

u=0 c
∗
uYn−u is a best h-step forecast of Yn+h.

Proof. Let Ỹn+h :=
∑n−1

u=0 cuYn−u be an arbitrary forecast, based on
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Y1, . . . , Yn. Then we have

E((Yn+h − Ỹn+h)
2)

= E((Yn+h − Ŷn+h + Ŷn+h − Ỹn+h)
2)

= E((Yn+h − Ŷn+h)
2) + 2

n−1∑
u=0

(c∗u − cu) E(Yn−u(Yn+h − Ŷn+h))

+ E((Ŷn+h − Ỹn+h)
2)

= E((Yn+h − Ŷn+h)
2) + E((Ŷn+h − Ỹn+h)

2)

≥ E((Yn+h − Ŷn+h)
2).

Suppose that (Yt) is a stationary process with mean zero and auto-
correlation function ρ. The equations (2.25) are then of Yule–Walker
type

ρ(h+ s) =
n−1∑
u=0

c∗uρ(s− u), s = 0, 1, . . . , n− 1,

or, in matrix language
ρ(h)

ρ(h+ 1)
...

ρ(h+ n− 1)

 = Pn


c∗0
c∗1
...

c∗n−1

 (2.26)

with the matrix Pn as defined in (2.9). If this matrix is invertible,
then  c∗0

...
c∗n−1

 := P−1
n

 ρ(h)
...

ρ(h+ n− 1)

 (2.27)

is the uniquely determined solution of (2.26).
If we put h = 1, then equation (2.27) implies that c∗n−1 equals the
partial autocorrelation coefficient α(n). In this case, α(n) is the coef-

ficient of Y1 in the best linear one-step forecast Ŷn+1 =
∑n−1

u=0 c
∗
uYn−u

of Yn+1.
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Example 2.3.3. Consider the MA(1)-process Yt = εt + aεt−1 with
E(ε0) = 0. Its autocorrelation function is by Example 2.2.2 given by
ρ(0) = 1, ρ(1) = a/(1 + a2), ρ(u) = 0 for u ≥ 2. The matrix Pn
equals therefore

Pn =



1 a
1+a2 0 0 . . . 0

a
1+a2 1 a

1+a2 0 0
0 a

1+a2 1 a
1+a2 0

... . . . ...
0 . . . 1 a

1+a2

0 0 . . . a
1+a2 1


.

Check that the matrix Pn = (Corr(Yi, Yj))1≤i,j≤n is positive definite,
xTPnx > 0 for any x ∈ Rn unless x = 0 (Exercise 2.44), and thus,
Pn is invertible. The best forecast of Yn+1 is by (2.27), therefore,∑n−1

u=0 c
∗
uYn−u with  c∗0

...
c∗n−1

 = P−1
n


a

1+a2

0
...
0


which is a/(1 + a2) times the first column of P−1

n . The best forecast
of Yn+h for h ≥ 2 is by (2.27) the constant 0. Note that Yn+h is for
h ≥ 2 uncorrelated with Y1, . . . , Yn and thus not really predictable by
Y1, . . . , Yn.

Theorem 2.3.4. Suppose that Yt =
∑p

u=1 auYt−u + εt, t ∈ Z, is an
AR(p)-process, which satisfies the stationarity condition (2.4) and has
zero mean E(Y0) = 0. Let n ≥ p. The best one-step forecast is

Ŷn+1 = a1Yn + a2Yn−1 + · · ·+ apYn+1−p

and the best two-step forecast is

Ŷn+2 = a1Ŷn+1 + a2Yn + · · ·+ apYn+2−p.

The best h-step forecast for arbitrary h ≥ 2 is recursively given by

Ŷn+h = a1Ŷn+h−1 + · · ·+ ah−1Ŷn+1 + ahYn + · · ·+ apYn+h−p.
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Proof. Since (Yt) satisfies the stationarity condition (2.4), it is in-
vertible by Theorem 2.2.3 i.e., there exists an absolutely summable
causal filter (bu)u≥0 such that Yt =

∑
u≥0 buεt−u, t ∈ Z, almost surely.

This implies in particular E(Ytεt+h) =
∑

u≥0 bu E(εt−uεt+h) = 0 for
any h ≥ 1, cf. Theorem 2.1.5. Hence we obtain for i = 1, . . . , n

E((Yn+1 − Ŷn+1)Yi) = E(εn+1Yi) = 0

from which the assertion for h = 1 follows by Lemma 2.3.2. The case
of an arbitrary h ≥ 2 is now a consequence of the recursion

E((Yn+h − Ŷn+h)Yi)

= E

εn+h +

min(h−1,p)∑
u=1

auYn+h−u −
min(h−1,p)∑

u=1

auŶn+h−u

Yi


=

min(h−1,p)∑
u=1

au E
((
Yn+h−u − Ŷn+h−u

)
Yi

)
= 0, i = 1, . . . , n,

and Lemma 2.3.2.

A repetition of the arguments in the preceding proof implies the fol-
lowing result, which shows that for an ARMA(p, q)-process the fore-
cast of Yn+h for h > q is controlled only by the AR-part of the process.

Theorem 2.3.5. Suppose that Yt =
∑p

u=1 auYt−u + εt +
∑q

v=1 bvεt−v,
t ∈ Z, is an ARMA(p, q)-process, which satisfies the stationarity con-
dition (2.4) and has zero mean, precisely E(ε0) = 0. Suppose that
n+ q − p ≥ 0. The best h-step forecast of Yn+h for h > q satisfies the
recursion

Ŷn+h =

p∑
u=1

auŶn+h−u.

Example 2.3.6. We illustrate the best forecast of the ARMA(1, 1)-
process

Yt = 0.4Yt−1 + εt − 0.6εt−1, t ∈ Z,

with E(Yt) = E(εt) = 0. First we need the optimal 1-step forecast Ŷi
for i = 1, . . . , n. These are defined by putting unknown values of Yt
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with an index t ≤ 0 equal to their expected value, which is zero. We,
thus, obtain

Ŷ1 := 0, ε̂1 := Y1 − Ŷ1 = Y1,

Ŷ2 := 0.4Y1 + 0− 0.6ε̂1

= −0.2Y1, ε̂2 := Y2 − Ŷ2 = Y2 + 0.2Y1,

Ŷ3 := 0.4Y2 + 0− 0.6ε̂2
= 0.4Y2 − 0.6(Y2 + 0.2Y1)

= −0.2Y2 − 0.12Y1, ε̂3 := Y3 − Ŷ3,
...

...

until Ŷi and ε̂i are defined for i = 1, . . . , n. The actual forecast is then
given by

Ŷn+1 = 0.4Yn + 0− 0.6ε̂n = 0.4Yn − 0.6(Yn − Ŷn),
Ŷn+2 = 0.4Ŷn+1 + 0 + 0,

...

Ŷn+h = 0.4Ŷn+h−1 = · · · = 0.4h−1Ŷn+1 −→h→∞ 0,

where εt with index t ≥ n+ 1 is replaced by zero, since it is uncorre-
lated with Yi, i ≤ n.

In practice one replaces the usually unknown coefficients au, bv in the
above forecasts by their estimated values.

Exercises
2.1. Show that the expectation of complex valued random variables
is linear, i.e.,

E(aY + bZ) = aE(Y ) + bE(Z),

where a, b ∈ C and Y, Z are integrable.

Show that
Cov(Y, Z) = E(Y Z̄)− E(Y )E(Z̄)

for square integrable complex random variables Y and Z.
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2.2. Suppose that the complex random variables Y and Z are square
integrable. Show that

Cov(aY + b, Z) = aCov(Y, Z), a, b ∈ C.

2.3. Give an example of a stochastic process (Yt) such that for arbi-
trary t1, t2 ∈ Z and k 6= 0

E(Yt1) 6= E(Yt1+k) but Cov(Yt1, Yt2) = Cov(Yt1+k, Yt2+k).

2.4. Let (Xt), (Yt) be stationary processes such that Cov(Xt, Ys) = 0
for t, s ∈ Z. Show that for arbitrary a, b ∈ C the linear combinations
(aXt + bYt) yield a stationary process.

Suppose that the decomposition Zt = Xt + Yt, t ∈ Z holds. Show
that stationarity of (Zt) does not necessarily imply stationarity of
(Xt).

2.5. Show that the process Yt = Xeiat, a ∈ R, is stationary, where
X is a complex valued random variable with mean zero and finite
variance.

Show that the random variable Y = beiU has mean zero, where U is
a uniformly distributed random variable on (0, 2π) and b ∈ C.

2.6. Let Z1, Z2 be independent and normal N(µi, σ
2
i ), i = 1, 2, dis-

tributed random variables and choose λ ∈ R. For which means
µ1, µ2 ∈ R and variances σ2

1, σ
2
2 > 0 is the cosinoid process

Yt = Z1 cos(2πλt) + Z2 sin(2πλt), t ∈ Z

stationary?

2.7. Show that the autocovariance function γ : Z→ C of a complex-
valued stationary process (Yt)t∈Z, which is defined by

γ(h) = E(Yt+hȲt)− E(Yt+h) E(Ȳt), h ∈ Z,

has the following properties: γ(0) ≥ 0, |γ(h)| ≤ γ(0), γ(h) = γ(−h),
i.e., γ is a Hermitian function, and

∑
1≤r,s≤n zrγ(r − s)z̄s ≥ 0 for

z1, . . . , zn ∈ C, n ∈ N, i.e., γ is a positive semidefinite function.
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2.8. Suppose that Yt, t = 1, . . . , n, is a stationary process with mean
µ. Then µ̂n := n−1∑n

t=1 Yt is an unbiased estimator of µ. Express the
mean square error E(µ̂n−µ)2 in terms of the autocovariance function
γ and show that E(µ̂n − µ)2 → 0 if γ(n)→ 0, n→∞.

2.9. Suppose that (Yt)t∈Z is a stationary process and denote by

c(k) :=

{
1
n

∑n−|k|
t=1 (Yt − Ȳ )(Yt+|k| − Ȳ ), |k| = 0, . . . , n− 1,

0, |k| ≥ n.

the empirical autocovariance function at lag k, k ∈ Z.

(i) Show that c(k) is a biased estimator of γ(k) (even if the factor
n−1 is replaced by (n− k)−1) i.e., E(c(k)) 6= γ(k).

(ii) Show that the k-dimensional empirical covariance matrix

Ck :=


c(0) c(1) . . . c(k − 1)
c(1) c(0) c(k − 2)

... . . . ...
c(k − 1) c(k − 2) . . . c(0)


is positive semidefinite. (If the factor n−1 in the definition of c(j)
is replaced by (n − j)−1, j = 1, . . . , k, the resulting covariance
matrix may not be positive semidefinite.) Hint: Consider k ≥ n
and write Ck = n−1AAT with a suitable k × 2k-matrix A.
Show further that Cm is positive semidefinite if Ck is positive
semidefinite for k > m.

(iii) If c(0) > 0, then Ck is nonsingular, i.e., Ck is positive definite.

2.10. Suppose that (Yt) is a stationary process with autocovariance
function γY . Express the autocovariance function of the difference
filter of first order ∆Yt = Yt − Yt−1 in terms of γY . Find it when
γY (k) = λ|k|.

2.11. Let (Yt)t∈Z be a stationary process with mean zero. If its au-
tocovariance function satisfies γ(τ) = 0 for some τ > 0, then γ is
periodic with length τ , i.e., γ(t+ τ) = γ(t), t ∈ Z.
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2.12. Let (Yt) be a stochastic process such that for t ∈ Z

P{Yt = 1} = pt = 1− P{Yt = −1}, 0 < pt < 1.

Suppose in addition that (Yt) is a Markov process , i.e., for any t ∈ Z,
k ≥ 1

P (Yt = y0|Yt−1 = y1, . . . , Yt−k = yk) = P (Yt = y0|Yt−1 = y1).

(i) Is (Yt)t∈N a stationary process?

(ii) Compute the autocovariance function in case P (Yt = 1|Yt−1 =
1) = λ and pt = 1/2.

2.13. Let (εt)t be a white noise process with independent εt ∼ N(0, 1)
and define

ε̃t =

{
εt, if t is even,

(ε2
t−1 − 1)/

√
2, if t is odd.

Show that (ε̃t)t is a white noise process with E(ε̃t) = 0 and Var(ε̃t) =
1, where the ε̃t are neither independent nor identically distributed.
Plot the path of (εt)t and (ε̃t)t for t = 1, . . . , 100 and compare!

2.14. Let (εt)t∈Z be a white noise. The process Yt =
∑t

s=1 εs is said
to be a random walk . Plot the path of a random walk with normal
N(µ, σ2) distributed εt for each of the cases µ < 0, µ = 0 and µ > 0.

2.15. Let (au),(bu) be absolutely summable filters and let (Zt) be a
stochastic process with supt∈Z E(Z2

t ) <∞. Put for t ∈ Z

Xt =
∑
u

auZt−u, Yt =
∑
v

bvZt−v.

Then we have

E(XtYt) =
∑
u

∑
v

aubv E(Zt−uZt−v).

Hint: Use the general inequality |xy| ≤ (x2 + y2)/2.



Exercises 115

2.16. Show the equality

E((Yt − µY )(Ys − µY )) = lim
n→∞

Cov
( n∑
u=−n

auZt−u,
n∑

w=−n
awZs−w

)
in the proof of Theorem 2.1.6.

2.17. Let Yt = aYt−1 + εt, t ∈ Z be an AR(1)-process with |a| > 1.
Compute the autocorrelation function of this process.

2.18. Compute the orders p and the coefficients au of the process Yt =∑p
u=0 auεt−u with Var(ε0) = 1 and autocovariance function γ(1) =

2, γ(2) = 1, γ(3) = −1 and γ(t) = 0 for t ≥ 4. Is this process
invertible?

2.19. The autocorrelation function ρ of an arbitrary MA(q)-process
satisfies

−1

2
≤

q∑
v=1

ρ(v) ≤ 1

2
q.

Give examples of MA(q)-processes, where the lower bound and the
upper bound are attained, i.e., these bounds are sharp.

2.20. Let (Yt)t∈Z be a stationary stochastic process with E(Yt) = 0,
t ∈ Z, and

ρ(t) =


1 if t = 0

ρ(1) if t = 1

0 if t > 1,

where |ρ(1)| < 1/2. Then there exists a ∈ (−1, 1) and a white noise
(εt)t∈Z such that

Yt = εt + aεt−1.

Hint: Example 2.2.2.

2.21. Find two MA(1)-processes with the same autocovariance func-
tions.
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2.22. Suppose that Yt = εt + aεt−1 is a noninvertible MA(1)-process,
where |a| > 1. Define the new process

ε̃t =
∞∑
j=0

(−a)−jYt−j

and show that (ε̃t) is a white noise. Show that Var(ε̃t) = a2 Var(εt)
and (Yt) has the invertible representation

Yt = ε̃t + a−1ε̃t−1.

2.23. Plot the autocorrelation functions of MA(p)-processes for dif-
ferent values of p.

2.24. Generate and plot AR(3)-processes (Yt), t = 1, . . . , 500 where
the roots of the characteristic polynomial have the following proper-
ties:

(i) all roots are outside the unit disk,

(ii) all roots are inside the unit disk,

(iii) all roots are on the unit circle,

(iv) two roots are outside, one root inside the unit disk,

(v) one root is outside, one root is inside the unit disk and one root
is on the unit circle,

(vi) all roots are outside the unit disk but close to the unit circle.

2.25. Show that the AR(2)-process Yt = a1Yt−1 + a2Yt−2 + εt for a1 =
1/3 and a2 = 2/9 has the autocorrelation function

ρ(k) =
16

21

(2

3

)|k|
+

5

21

(
− 1

3

)|k|
, k ∈ Z

and for a1 = a2 = 1/12 the autocorrelation function

ρ(k) =
45

77

(1

3

)|k|
+

32

77

(
− 1

4

)|k|
, k ∈ Z.
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2.26. Let (εt) be a white noise with E(ε0) = µ,Var(ε0) = σ2 and put

Yt = εt − Yt−1, t ∈ N, Y0 = 0.

Show that
Corr(Ys, Yt) = (−1)s+t min{s, t}/

√
st.

2.27. An AR(2)-process Yt = a1Yt−1 +a2Yt−2 +εt satisfies the station-
arity condition (2.4), if the pair (a1, a2) is in the triangle

∆ :=
{

(α, β) ∈ R2 : −1 < β < 1, α + β < 1 and β − α < 1
}
.

Hint: Use the fact that necessarily ρ(1) ∈ (−1, 1).

2.28. Let (Yt) denote the unique stationary solution of the autore-
gressive equations

Yt = aYt−1 + εt, t ∈ Z,

with |a| > 1. Then (Yt) is given by the expression

Yt = −
∞∑
j=1

a−jεt+j

(see the proof of Lemma 2.1.10). Define the new process

ε̃t = Yt −
1

a
Yt−1,

and show that (ε̃t) is a white noise with Var(ε̃t) = Var(εt)/a
2. These

calculations show that (Yt) is the (unique stationary) solution of the
causal AR-equations

Yt =
1

a
Yt−1 + ε̃t, t ∈ Z.

Thus, every AR(1)-process with |a| > 1 can be represented as an
AR(1)-process with |a| < 1 and a new white noise.

Show that for |a| = 1 the above autoregressive equations have no
stationary solutions. A stationary solution exists if the white noise
process is degenerated, i.e., E(ε2

t ) = 0.
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2.29. Consider the process

Ỹt :=

{
ε1 for t = 1

aYt−1 + εt for t > 1,

i.e., Ỹt, t ≥ 1, equals the AR(1)-process Yt = aYt−1 + εt, conditional
on Y0 = 0. Compute E(Ỹt),Var(Ỹt) and Cov(Yt, Yt+s). Is there some-
thing like asymptotic stationarity for t→∞?

Choose a ∈ (−1, 1), a 6= 0, and compute the correlation matrix of
Y1, . . . , Y10.

2.30. Use the IML function ARMASIM to simulate the stationary
AR(2)-process

Yt = −0.3Yt−1 + 0.3Yt−2 + εt.

Estimate the parameters a1 = −0.3 and a2 = 0.3 by means of the
Yule–Walker equations using the SAS procedure PROC ARIMA.

2.31. Show that the value at lag 2 of the partial autocorrelation func-
tion of the MA(1)-process

Yt = εt + aεt−1, t ∈ Z

is

α(2) = − a2

1 + a2 + a4 .

2.32. (Unemployed1 Data) Plot the empirical autocorrelations and
partial autocorrelations of the trend and seasonally adjusted Unem-
ployed1 Data from the building trade, introduced in Example 1.1.1.
Apply the Box–Jenkins program. Is a fit of a pure MA(q)- or AR(p)-
process reasonable?

2.33. Plot the autocorrelation functions of ARMA(p, q)-processes for
different values of p, q using the IML function ARMACOV. Plot also
their empirical counterparts.

2.34. Compute the autocovariance and autocorrelation function of an
ARMA(1, 2)-process.
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2.35. Derive the least squares normal equations for an AR(p)-process
and compare them with the Yule–Walker equations.

2.36. Let (εt)t∈Z be a white noise. The process Wt =
∑t

s=1 εs is then
called a random walk. Generate two independent random walks µt,
νt, t = 1, . . . , 100, where the εt are standard normal and independent.
Simulate from these

Xt = µt + δ
(1)
t , Yt = µt + δ

(2)
t , Zt = νt + δ

(3)
t ,

where the δ
(i)
t are again independent and standard normal, i = 1, 2, 3.

Plot the generated processes Xt, Yt and Zt and their first order dif-
ferences. Which of these series are cointegrated? Check this by the
Phillips-Ouliaris-test.

2.37. (US Interest Data) The file “us interest rates.txt” contains the
interest rates of three-month, three-year and ten-year federal bonds of
the USA, monthly collected from July 1954 to December 2002. Plot
the data and the corresponding differences of first order. Test also
whether the data are I(1). Check next if the three series are pairwise
cointegrated.

2.38. Show that the density of the t-distribution with m degrees of
freedom converges to the density of the standard normal distribution
as m tends to infinity. Hint: Apply the dominated convergence theo-
rem (Lebesgue).

2.39. Let (Yt)t be a stationary and causal ARCH(1)-process with
|a1| < 1.

(i) Show that Y 2
t = a0

∑∞
j=0 a

j
1Z

2
t Z

2
t−1 · · · · · Z2

t−j with probability
one.

(ii) Show that E(Y 2
t ) = a0/(1− a1).

(iii) Evaluate E(Y 4
t ) and deduce that E(Z4

1)a2
1 < 1 is a sufficient

condition for E(Y 4
t ) <∞.

Hint: Theorem 2.1.5.
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2.40. Determine the joint density of Yp+1, . . . , Yn for an ARCH(p)-
process Yt with normal distributed Zt given that Y1 = y1, . . . , Yp =
yp. Hint: Recall that the joint density fX,Y of a random vector
(X, Y ) can be written in the form fX,Y (x, y) = fY |X(y|x)fX(x), where
fY |X(y|x) := fX,Y (x, y)/fX(x) if fX(x) > 0, and fY |X(y|x) := fY (y),
else, is the (conditional) density of Y given X = x and fX , fY is the
(marginal) density of X, Y .

2.41. Generate an ARCH(1)-process (Yt)t with a0 = 1 and a1 = 0.5.
Plot (Yt)t as well as (Y 2

t )t and its partial autocorrelation function.
What is the value of the partial autocorrelation coefficient at lag 1
and lag 2? Use PROC ARIMA to estimate the parameter of the AR(1)-
process (Y 2

t )t and apply the Box–Ljung test.

2.42. (Hong Kong Data) Fit an GARCH(p, q)-model to the daily
Hang Seng closing index of Hong Kong stock prices from July 16, 1981,
to September 31, 1983. Consider in particular the cases p = q = 2
and p = 3, q = 2.

2.43. (Zurich Data) The daily value of the Zurich stock index was
recorded between January 1st, 1988 and December 31st, 1988. Use
a difference filter of first order to remove a possible trend. Plot the
(trend-adjusted) data, their squares, the pertaining partial autocor-
relation function and parameter estimates. Can the squared process
be considered as an AR(1)-process?

2.44. Show that the matrix Σ′−1 in Example 2.3.1 has the determi-
nant 1− a2.

Show that the matrix Pn in Example 2.3.3 has the determinant (1 +
a2 + a4 + · · ·+ a2n)/(1 + a2)n.

2.45. (Car Data) Apply the Box–Jenkins program to the Car Data.
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3State-Space Models

In state-space models we have, in general, a nonobservable target
process (Xt) and an observable process (Yt). They are linked by the
assumption that (Yt) is a linear function of (Xt) with an added noise,
where the linear function may vary in time. The aim is the derivation
of best linear estimates of Xt, based on (Ys)s≤t.

3.1 The State-Space Representation
Many models of time series such as ARMA(p, q)-processes can be
embedded in state-space models if we allow in the following sequences
of random vectors Xt ∈ Rk and Yt ∈ Rm.
A multivariate state-space model is now defined by the state equation

Xt+1 = AtXt +Btεt+1 ∈ Rk, (3.1)

describing the time-dependent behavior of the state Xt ∈ Rk, and the
observation equation

Yt = CtXt + ηt ∈ Rm. (3.2)

We assume that (At), (Bt) and (Ct) are sequences of known matrices,
(εt) and (ηt) are uncorrelated sequences of white noises with mean
vectors 0 and known covariance matrices Cov(εt) = E(εtε

T
t ) =: Qt,

Cov(ηt) = E(ηtη
T
t ) =: Rt.

We suppose further that X0 and εt, ηt, t ≥ 1, are uncorrelated, where
two random vectors W ∈ Rp and V ∈ Rq are said to be uncorrelated
if their components are i.e., if the matrix of their covariances vanishes

E((W − E(W )(V − E(V ))T ) = 0.
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By E(W ) we denote the vector of the componentwise expectations of
W . We say that a time series (Yt) has a state-space representation if
it satisfies the representations (3.1) and (3.2).

Example 3.1.1. Let (ηt) be a white noise in R and put

Yt := µt + ηt

with linear trend µt = a + bt. This simple model can be represented
as a state-space model as follows. Define the state vector Xt as

Xt :=

(
µt
1

)
,

and put

A :=

(
1 b
0 1

)
From the recursion µt+1 = µt + b we then obtain the state equation

Xt+1 =

(
µt+1

1

)
=

(
1 b
0 1

)(
µt
1

)
= AXt,

and with
C := (1, 0)

the observation equation

Yt = (1, 0)

(
µt
1

)
+ ηt = CXt + ηt.

Note that the state Xt is nonstochastic i.e., Bt = 0. This model is
moreover time-invariant, since the matrices A, B := Bt and C do
not depend on t.

Example 3.1.2. An AR(p)-process

Yt = a1Yt−1 + · · ·+ apYt−p + εt

with a white noise (εt) has a state-space representation with state
vector

Xt = (Yt, Yt−1, . . . , Yt−p+1)
T .
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If we define the p× p-matrix A by

A :=


a1 a2 . . . ap−1 ap
1 0 . . . 0 0
0 1 0 0
... . . . ...

...
0 0 . . . 1 0


and the p× 1-matrices B, CT by

B := (1, 0, . . . , 0)T =: CT ,

then we have the state equation

Xt+1 = AXt +Bεt+1

and the observation equation

Yt = CXt.

Example 3.1.3. For the MA(q)-process

Yt = εt + b1εt−1 + · · ·+ bqεt−q

we define the non observable state

Xt := (εt, εt−1, . . . , εt−q)
T ∈ Rq+1.

With the (q + 1)× (q + 1)-matrix

A :=


0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 0 0
... . . . ...

...
0 0 0 . . . 1 0

 ,

the (q + 1)× 1-matrix

B := (1, 0, . . . , 0)T
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and the 1× (q + 1)-matrix

C := (1, b1, . . . , bq)

we obtain the state equation

Xt+1 = AXt +Bεt+1

and the observation equation

Yt = CXt.

Example 3.1.4. Combining the above results for AR(p) and MA(q)-
processes, we obtain a state-space representation of ARMA(p, q)-pro-
cesses

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q.

In this case the state vector can be chosen as

Xt := (Yt, Yt−1, . . . , Yt−p+1, εt, εt−1, . . . , εt−q+1)
T ∈ Rp+q.

We define the (p+ q)× (p+ q)-matrix

A :=



a1 a2 ... ap−1 ap b1 b2 ... bq−1 bq
1 0 ... 0 0 0 ... ... ... 0

0 1 0 ... 0
...

...
... ... ...

...
...

0 ... 0 1 0 0 ... ... ... 0
0 ... ... ... 0 0 ... ... ... 0
...

... 1 0 ... ... 0
...

... 0 1 0 ... 0
...

...
... ... ...

0 ... ... ... 0 0 ... 0 1 0


,

the (p+ q)× 1-matrix

B := (1, 0, . . . , 0, 1, 0, . . . , 0)T

with the entry 1 at the first and (p+1)-th position and the 1×(p+q)-
matrix

C := (1, 0, . . . , 0).
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Then we have the state equation

Xt+1 = AXt +Bεt+1

and the observation equation

Yt = CXt.

Remark 3.1.5. General ARIMA(p, d, q)-processes also have a state-
space representation, see exercise 3.2. Consequently the same is true
for random walks, which can be written as ARIMA(0, 1, 0)-processes.

3.2 The Kalman-Filter
The key problem in the state-space model (3.1), (3.2) is the estimation
of the nonobservable state Xt. It is possible to derive an estimate
of Xt recursively from an estimate of Xt−1 together with the last
observation Yt, known as the Kalman recursions (Kalman 1960). We
obtain in this way a unified prediction technique for each time series
model that has a state-space representation.
We want to compute the best linear prediction

X̂t := D1Y1 + · · ·+DtYt (3.3)

of Xt, based on Y1, . . . ,Yt i.e., the k × m-matrices D1, . . . ,Dt are
such that the mean squared error is minimized

E((Xt − X̂t)
T (Xt − X̂t))

= E((Xt −
t∑

j=1

DjYj)
T (Xt −

t∑
j=1

DjYj))

= min
k×m−matricesD′1,...,D

′
t

E((Xt −
t∑

j=1

D′jYj)
T (Xt −

t∑
j=1

D′jYj)). (3.4)

By repeating the arguments in the proof of Lemma 2.3.2 we will prove
the following result. It states that X̂t is a best linear prediction of
Xt based on Y1, . . . ,Yt if each component of the vector Xt − X̂t

is orthogonal to each component of the vectors Ys, 1 ≤ s ≤ t, with
respect to the inner product E(XY ) of two random variable X and Y .
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Lemma 3.2.1. If the estimate X̂t defined in (3.3) satisfies

E((Xt − X̂t)Y
T
s ) = 0, 1 ≤ s ≤ t, (3.5)

then it minimizes the mean squared error (3.4).

Note that E((Xt − X̂t)Y
T
s ) is a k ×m-matrix, which is generated by

multiplying each component of Xt − X̂t ∈ Rk with each component
of Ys ∈ Rm.

Proof. Let X ′t =
∑t

j=1D
′
jYj ∈ Rk be an arbitrary linear combination

of Y1, . . . ,Yt. Then we have

E((Xt −X ′t)T (Xt −X ′t))

= E
((
Xt − X̂t +

t∑
j=1

(Dj −D′j)Yj
)T(

Xt − X̂t +
t∑

j=1

(Dj −D′j)Yj
))

= E((Xt − X̂t)
T (Xt − X̂t)) + 2

t∑
j=1

E((Xt − X̂t)
T (Dj −D′j)Yj)

+ E
(( t∑

j=1

(Dj −D′j)Yj
)T t∑

j=1

(Dj −D′j)Yj
)

≥ E((Xt − X̂t)
T (Xt − X̂t)),

since in the second-to-last line the final term is nonnegative and the
second one vanishes by the property (3.5).

Let now X̂t−1 be a linear prediction of Xt−1 fulfilling (3.5) based on
the observations Y1, . . . ,Yt−1. Then

X̃t := At−1X̂t−1 (3.6)

is the best linear prediction of Xt based on Y1, . . . ,Yt−1, which is easy
to see. We simply replaced εt in the state equation by its expectation
0. Note that εt and Ys are uncorrelated if s < t i.e., E((Xt−X̃t)Y

T
s ) =

0 for 1 ≤ s ≤ t− 1, see Exercise 3.4.
From this we obtain that

Ỹt := CtX̃t
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is the best linear prediction of Yt based on Y1, . . . ,Yt−1, since E((Yt−
Ỹt)Y

T
s ) = E((Ct(Xt− X̃t) +ηt)Y

T
s ) = 0, 1 ≤ s ≤ t− 1; note that ηt

and Ys are uncorrelated if s < t, see also Exercise 3.4.
Define now by

∆̂t := E((Xt − X̂t)(Xt − X̂t)
T ), ∆̃t := E((Xt − X̃t)(Xt − X̃t)

T ).

the covariance matrices of the approximation errors. Then we have

∆̃t = E((At−1(Xt−1 − X̂t−1) +Bt−1εt) ·
(At−1(Xt−1 − X̂t−1) +Bt−1εt)

T )

= E(At−1(Xt−1 − X̂t−1)(At−1(Xt−1 − X̂t−1))
T )

+ E((Bt−1εt)(Bt−1εt)
T )

= At−1∆̂t−1A
T
t−1 +Bt−1QtB

T
t−1,

since εt and Xt−1 − X̂t−1 are obviously uncorrelated. In complete
analogy one shows that

E((Yt − Ỹt)(Yt − Ỹt)T ) = Ct∆̃tC
T
t +Rt.

Suppose that we have observed Y1, . . . ,Yt−1, and that we have pre-
dicted Xt by X̃t = At−1X̂t−1. Assume that we now also observe Yt.
How can we use this additional information to improve the prediction
X̃t of Xt? To this end we add a matrix Kt such that we obtain the
best prediction X̂t based on Y1, . . .Yt:

X̃t +Kt(Yt − Ỹt) = X̂t (3.7)

i.e., we have to choose the matrix Kt according to Lemma 3.2.1 such
that Xt − X̂t and Ys are uncorrelated for s = 1, . . . , t. In this case,
the matrix Kt is called the Kalman gain.

Lemma 3.2.2. The matrix Kt in (3.7) is a solution of the equation

Kt(Ct∆̃tC
T
t +Rt) = ∆̃tC

T
t . (3.8)

Proof. The matrix Kt has to be chosen such that Xt−X̂t and Ys are
uncorrelated for s = 1, . . . , t, i.e.,

0 = E((Xt − X̂t)Y
T
s ) = E((Xt − X̃t −Kt(Yt − Ỹt))Y T

s ), s ≤ t.
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Note that an arbitrary k ×m-matrix Kt satisfies

E
(

(Xt − X̃t −Kt(Yt − Ỹt))Y T
s

)
= E((Xt − X̃t)Y

T
s )−Kt E((Yt − Ỹt)Y T

s ) = 0, s ≤ t− 1.

In order to fulfill the above condition, the matrix Kt needs to satisfy
only

0 = E((Xt − X̃t)Y
T
t )−Kt E((Yt − Ỹt)Y T

t )

= E((Xt − X̃t)(Yt − Ỹt)T )−Kt E((Yt − Ỹt)(Yt − Ỹt)T )

= E((Xt − X̃t)(Ct(Xt − X̃t) + ηt)
T )−Kt E((Yt − Ỹt)(Yt − Ỹt)T )

= E((Xt − X̃t)(Xt − X̃t)
T )CT

t −Kt E((Yt − Ỹt)(Yt − Ỹt)T )

= ∆̃tC
T
t −Kt(Ct∆̃tC

T
t +Rt).

But this is the assertion of Lemma 3.2.2. Note that Ỹt is a linear
combination of Y1, . . . ,Yt−1 and that ηt andXt−X̃t are uncorrelated.

If the matrix Ct∆̃tC
T
t +Rt is invertible, then

Kt := ∆̃tC
T
t (Ct∆̃tC

T
t +Rt)

−1

is the uniquely determined Kalman gain. We have, moreover, for a
Kalman gain

∆̂t = E((Xt − X̂t)(Xt − X̂t)
T )

= E
(

(Xt − X̃t −Kt(Yt − Ỹt))(Xt − X̃t −Kt(Yt − Ỹt))T
)

= ∆̃t +Kt E((Yt − Ỹt)(Yt − Ỹt)T )KT
t

− E((Xt − X̃t)(Yt − Ỹt)T )KT
t −Kt E((Yt − Ỹt)(Xt − X̃t)

T )

= ∆̃t +Kt(Ct∆̃tC
T
t +Rt)K

T
t

− ∆̃tC
T
t K

T
t −KtCt∆̃t

= ∆̃t −KtCt∆̃t

by (3.8) and the arguments in the proof of Lemma 3.2.2.



3.2 The Kalman-Filter 129

The recursion in the discrete Kalman filter is done in two steps: From
X̂t−1 and ∆̂t−1 one computes in the prediction step first

X̃t = At−1X̂t−1,

Ỹt = CtX̃t,

∆̃t = At−1∆̂t−1A
T
t−1 +Bt−1QtB

T
t−1. (3.9)

In the updating step one then computes Kt and the updated values
X̂t, ∆̂t

Kt = ∆̃tC
T
t (Ct∆̃tC

T
t +Rt)

−1,

X̂t = X̃t +Kt(Yt − Ỹt),
∆̂t = ∆̃t −KtCt∆̃t. (3.10)

An obvious problem is the choice of the initial values X̃1 and ∆̃1. One
frequently puts X̃1 = 0 and ∆̃1 as the diagonal matrix with constant
entries σ2 > 0. The number σ2 reflects the degree of uncertainty about
the underlying model. Simulations as well as theoretical results show,
however, that the estimates X̂t are often not affected by the initial
values X̃1 and ∆̃1 if t is large, see for instance Example 3.2.3 below.
If in addition we require that the state-space model (3.1), (3.2) is
completely determined by some parametrization ϑ of the distribution
of (Yt) and (Xt), then we can estimate the matrices of the Kalman
filter in (3.9) and (3.10) under suitable conditions by a maximum
likelihood estimate of ϑ; see e.g. Brockwell and Davis (2002, Section
8.5) or Janacek and Swift (1993, Section 4.5).

By iterating the 1-step prediction X̃t = At−1X̂t−1 of Xt in (3.6)
h times, we obtain the h-step prediction of the Kalman filter

X̃t+h := At+h−1X̃t+h−1, h ≥ 1,

with the initial value X̃t+0 := X̂t. The pertaining h-step prediction
of Yt+h is then

Ỹt+h := Ct+hX̃t+h, h ≥ 1.

Example 3.2.3. Let (ηt) be a white noise in R with E(ηt) = 0,
E(η2

t ) = σ2 > 0 and put for some µ ∈ R

Yt := µ+ ηt, t ∈ Z.
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This process can be represented as a state-space model by putting
Xt := µ, with state equation Xt+1 = Xt and observation equation
Yt = Xt + ηt i.e., At = 1 = Ct and Bt = 0. The prediction step (3.9)
of the Kalman filter is now given by

X̃t = X̂t−1, Ỹt = X̃t, ∆̃t = ∆t−1.

Note that all these values are in R. The h-step predictions X̃t+h, Ỹt+h
are, therefore, given by X̃t+1 = X̂t. The update step (3.10) of the
Kalman filter is

Kt =
∆t−1

∆t−1 + σ2

X̂t = X̂t−1 +Kt(Yt − X̂t−1)

∆̂t = ∆̂t−1 −Kt∆̂t−1 = ∆̂t−1
σ2

∆t−1 + σ2 .

Note that ∆̂t = E((Xt − X̂t)
2) ≥ 0 and thus,

0 ≤ ∆̂t = ∆̂t−1
σ2

∆t−1 + σ2 ≤ ∆̂t−1

is a decreasing and bounded sequence. Its limit ∆ := limt→∞ ∆̂t

consequently exists and satisfies

∆ = ∆
σ2

∆ + σ2

i.e., ∆ = 0. This means that the mean squared error E((Xt− X̂t)
2) =

E((µ−X̂t)
2) vanishes asymptotically, no matter how the initial values

X̃1 and ∆̃1 are chosen. Further we have limt→∞Kt = 0, which means
that additional observations Yt do not contribute to X̂t if t is large.
Finally, we obtain for the mean squared error of the h-step prediction
Ỹt+h of Yt+h

E((Yt+h − Ỹt+h)2) = E((µ+ ηt+h − X̂t)
2)

= E((µ− X̂t)
2) + E(η2

t+h) −→t→∞ σ2.
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Example 3.2.4. The following figure displays the Airline Data from
Example 1.3.1 together with 12-step forecasts based on the Kalman
filter. The original data yt, t = 1, . . . , 144 were log-transformed xt =
log(yt) to stabilize the variance; first order differences ∆xt = xt−xt−1
were used to eliminate the trend and, finally, zt = ∆xt − ∆xt−12
were computed to remove the seasonal component of 12 months. The
Kalman filter was applied to forecast zt, t = 145, . . . , 156, and the
results were transformed in the reverse order of the preceding steps
to predict the initial values yt, t = 145, . . . , 156.

Plot 3.2.1: Airline Data and predicted values using the Kalman filter.

1 /* airline_kalman.sas */
2 TITLE1 ’Original and Forecasted Data’;
3 TITLE2 ’Airline Data’;
4

5 /* Read in the data and compute log-transformation */
6 DATA data1;
7 INFILE ’c:\data\airline.txt’;
8 INPUT y;
9 yl=LOG(y);

10 t=_N_;
11
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12 /* Compute trend and seasonally adjusted data set */
13 PROC STATESPACE DATA=data1 OUT=data2 LEAD=12;
14 VAR yl(1,12); ID t;
15

16 /* Compute forecasts by inverting the log-transformation */
17 DATA data3;
18 SET data2;
19 yhat=EXP(FOR1);
20

21 /* Merge data sets */
22 DATA data4(KEEP=t y yhat);
23 MERGE data1 data3;
24 BY t;
25

26 /* Graphical options */
27 LEGEND1 LABEL=(’’) VALUE=(’original’ ’forecast’);
28 SYMBOL1 C=BLACK V=DOT H=0.7 I=JOIN L=1;
29 SYMBOL2 C=BLACK V=CIRCLE H=1.5 I=JOIN L=1;
30 AXIS1 LABEL=(ANGLE=90 ’Passengers’);
31 AXIS2 LABEL=(’January 1949 to December 1961’);
32

33 /* Plot data and forecasts */
34 PROC GPLOT DATA=data4;
35 PLOT y*t=1 yhat*t=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;
36 RUN; QUIT;

In the first data step the Airline Data are read
into data1. Their logarithm is computed and
stored in the variable yl. The variable t con-
tains the observation number.
The statement VAR yl(1,12) of the PROC
STATESPACE procedure tells SAS to use first
order differences of the initial data to remove
their trend and to adjust them to a seasonal
component of 12 months. The data are iden-

tified by the time index set to t. The results are
stored in the data set data2 with forecasts of
12 months after the end of the input data. This
is invoked by LEAD=12.
data3 contains the exponentially trans-
formed forecasts, thereby inverting the log-
transformation in the first data step.
Finally, the two data sets are merged and dis-
played in one plot.

Exercises
3.1. Consider the two state-space models

Xt+1 = AtXt +Btεt+1

Yt = CtXt + ηt
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and

X̃t+1 = ÃtX̃t + B̃tε̃t+1

Ỹt = C̃tX̃t + η̃t,

where (εTt ,η
T
t , ε̃

T
t , η̃

T
t )T is a white noise. Derive a state-space repre-

sentation for (Y T
t , Ỹ

T
t )T .

3.2. Find the state-space representation of an ARIMA(p, d, q)-process

(Yt)t. Hint: Yt = ∆dYt −
∑d

j=1(−1)j
(
d
d

)
Yt−j and consider the state

vector Zt := (Xt,Yt−1)
T , where Xt ∈ Rp+q is the state vector of the

ARMA(p, q)-process ∆dYt and Yt−1 := (Yt−d, . . . , Yt−1)
T .

3.3. Assume that the matrices A and B in the state-space model
(3.1) are independent of t and that all eigenvalues of A are in the
interior of the unit circle {z ∈ C : |z| ≤ 1}. Show that the unique
stationary solution of equation (3.1) is given by the infinite series
Xt =

∑∞
j=0A

jBεt−j+1. Hint: The condition on the eigenvalues is
equivalent to det(Ir − Az) 6= 0 for |z| ≤ 1. Show that there exists
some ε > 0 such that (Ir −Az)−1 has the power series representation∑∞

j=0A
jzj in the region |z| < 1 + ε.

3.4. Show that εt and Ys are uncorrelated and that ηt and Ys are
uncorrelated if s < t.

3.5. Apply PROC STATESPACE to the simulated data of the AR(2)-
process in Exercise 2.28.

3.6. (Gas Data) Apply PROC STATESPACE to the gas data. Can
they be stationary? Compute the one-step predictors and plot them
together with the actual data.
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Chapter

4The Frequency Domain
Approach of a Time
Series

The preceding sections focussed on the analysis of a time series in the
time domain, mainly by modelling and fitting an ARMA(p, q)-process
to stationary sequences of observations. Another approach towards
the modelling and analysis of time series is via the frequency domain:
A series is often the sum of a whole variety of cyclic components, from
which we had already added to our model (1.2) a long term cyclic one
or a short term seasonal one. In the following we show that a time
series can be completely decomposed into cyclic components. Such
cyclic components can be described by their periods and frequencies .
The period is the interval of time required for one cycle to complete.
The frequency of a cycle is its number of occurrences during a fixed
time unit; in electronic media, for example, frequencies are commonly
measured in hertz , which is the number of cycles per second, abbre-
viated by Hz. The analysis of a time series in the frequency domain
aims at the detection of such cycles and the computation of their
frequencies.
Note that in this chapter the results are formulated for any data
y1, . . . , yn, which need for mathematical reasons not to be generated
by a stationary process. Nevertheless it is reasonable to apply the
results only to realizations of stationary processes, since the empiri-
cal autocovariance function occurring below has no interpretation for
non-stationary processes, see Exercise 1.21.
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4.1 Least Squares Approach with Known
Frequencies

A function f : R −→ R is said to be periodic with period P > 0
if f(t + P ) = f(t) for any t ∈ R. A smallest period is called a
fundamental one. The reciprocal value λ = 1/P of a fundamental
period is the fundamental frequency. An arbitrary (time) interval of
length L consequently shows Lλ cycles of a periodic function f with
fundamental frequency λ. Popular examples of periodic functions
are sine and cosine, which both have the fundamental period P =
2π. Their fundamental frequency, therefore, is λ = 1/(2π). The
predominant family of periodic functions within time series analysis
are the harmonic components

m(t) := A cos(2πλt) +B sin(2πλt), A,B ∈ R, λ > 0,

which have period 1/λ and frequency λ. A linear combination of
harmonic components

g(t) := µ+
r∑

k=1

(
Ak cos(2πλkt) +Bk sin(2πλkt)

)
, µ ∈ R,

will be named a harmonic wave of length r.

Example 4.1.1. (Star Data). To analyze physical properties of a pul-
sating star, the intensity of light emitted by this pulsar was recorded
at midnight during 600 consecutive nights. The data are taken from
Newton (1988). It turns out that a harmonic wave of length two fits
the data quite well. The following figure displays the first 160 data
yt and the sum of two harmonic components with period 24 and 29,
respectively, plus a constant term µ = 17.07 fitted to these data, i.e.,

ỹt = 17.07− 1.86 cos(2π(1/24)t) + 6.82 sin(2π(1/24)t)

+ 6.09 cos(2π(1/29)t) + 8.01 sin(2π(1/29)t).

The derivation of these particular frequencies and coefficients will be
the content of this section and the following ones. For easier access
we begin with the case of known frequencies but unknown constants.



4.1 Least Squares Approach with Known Frequencies 137

Plot 4.1.1: Intensity of light emitted by a pulsating star and a fitted
harmonic wave.

Model: MODEL1
Dependent Variable: LUMEN

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 4 48400 12100 49297.2 <.0001
Error 595 146.04384 0.24545
C Total 599 48546

Root MSE 0.49543 R-square 0.9970
Dep Mean 17.09667 Adj R-sq 0.9970
C.V. 2.89782

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Prob > |T|
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Intercept 1 17.06903 0.02023 843.78 <.0001
sin24 1 6.81736 0.02867 237.81 <.0001
cos24 1 -1.85779 0.02865 -64.85 <.0001
sin29 1 8.01416 0.02868 279.47 <.0001
cos29 1 6.08905 0.02865 212.57 <.0001

Listing 4.1.1b: Regression results of fitting a harmonic wave.

1 /* star_harmonic.sas */
2 TITLE1 ’Harmonic wave’;
3 TITLE2 ’Star Data’;
4

5 /* Read in the data and compute harmonic waves to which data are to be
↪→ fitted */

6 DATA data1;
7 INFILE ’c:\data\star.txt’;
8 INPUT lumen @@;
9 t=_N_;

10 pi=CONSTANT(’PI’);
11 sin24=SIN(2*pi*t/24);
12 cos24=COS(2*pi*t/24);
13 sin29=SIN(2*pi*t/29);
14 cos29=COS(2*pi*t/29);
15

16 /* Compute a regression */
17 PROC REG DATA=data1;
18 MODEL lumen=sin24 cos24 sin29 cos29;
19 OUTPUT OUT=regdat P=predi;
20

21 /* Graphical options */
22 SYMBOL1 C=GREEN V=DOT I=NONE H=.4;
23 SYMBOL2 C=RED V=NONE I=JOIN;
24 AXIS1 LABEL=(ANGLE=90 ’lumen’);
25 AXIS2 LABEL=(’t’);
26

27 /* Plot data and fitted harmonic wave */
28 PROC GPLOT DATA=regdat(OBS=160);
29 PLOT lumen*t=1 predi*t=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;
30 RUN; QUIT;

The number π is generated by the SAS func-
tion CONSTANT with the argument ’PI’. It is
then stored in the variable pi. This is used
to define the variables cos24, sin24, cos29
and sin29 for the harmonic components. The
other variables here are lumen read from an
external file and t generated by N .
The PROC REG statement causes SAS to make
a regression from the independent variable
lumen defined on the left side of the MODEL
statement on the harmonic components which

are on the right side. A temporary data file
named regdat is generated by the OUTPUT
statement. It contains the original variables
of the source data step and the values pre-
dicted by the regression for lumen in the vari-
able predi.

The last part of the program creates a plot of
the observed lumen values and a curve of the
predicted values restricted on the first 160 ob-
servations.
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The output of Program 4.1.1 (star harmonic.sas) is the standard text
output of a regression with an ANOVA table and parameter estimates.
For further information on how to read the output, we refer to Falk
et al. (2002, Chapter 3).
In a first step we will fit a harmonic component with fixed frequency
λ to mean value adjusted data yt − ȳ, t = 1, . . . , n. To this end, we
put with arbitrary A, B ∈ R

m(t) = Am1(t) +Bm2(t),

where
m1(t) := cos(2πλt), m2(t) = sin(2πλt).

In order to get a proper fit uniformly over all t, it is reasonable to
choose the constants A and B as minimizers of the residual sum of
squares

R(A,B) :=
n∑
t=1

(yt − ȳ −m(t))2.

Taking partial derivatives of the function R with respect to A and B
and equating them to zero, we obtain that the minimizing pair A,B
has to satisfy the normal equations

Ac11 +Bc12 =
n∑
t=1

(yt − ȳ) cos(2πλt)

Ac21 +Bc22 =
n∑
t=1

(yt − ȳ) sin(2πλt),

where

cij =
n∑
t=1

mi(t)mj(t).

If c11c22 − c12c21 6= 0, the uniquely determined pair of solutions A,B
of these equations is

A = A(λ) = n
c22C(λ)− c12S(λ)

c11c22 − c12c21

B = B(λ) = n
c21C(λ)− c11S(λ)

c12c21 − c11c22
,
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where

C(λ) :=
1

n

n∑
t=1

(yt − ȳ) cos(2πλt),

S(λ) :=
1

n

n∑
t=1

(yt − ȳ) sin(2πλt) (4.1)

are the empirical (cross-)covariances of (yt)1≤t≤n and (cos(2πλt))1≤t≤n
and of (yt)1≤t≤n and (sin(2πλt))1≤t≤n, respectively. As we will see,
these cross-covariances C(λ) and S(λ) are fundamental to the analysis
of a time series in the frequency domain.
The solutions A and B become particularly simple in the case of
Fourier frequencies λ = k/n, k = 0, 1, 2, . . . , [n/2], where [x] denotes
the greatest integer less than or equal to x ∈ R. If k 6= 0 and k 6= n/2
in the case of an even sample size n, then we obtain from Lemma 4.1.2
below that c12 = c21 = 0 and c11 = c22 = n/2 and thus

A = 2C(λ), B = 2S(λ).

Harmonic Waves with Fourier Frequencies
Next we will fit harmonic waves to data y1, . . . , yn, where we restrict
ourselves to Fourier frequencies, which facilitates the computations.
The following lemma will be crucial.

Lemma 4.1.2. For arbitrary 0 ≤ k,m ≤ [n/2]; k,m ∈ N we have

n∑
t=1

cos
(

2π
k

n
t
)

cos
(

2π
m

n
t
)

=


n, k = m = 0 or = n/2

n/2, k = m 6= 0 and 6= n/2

0, k 6= m

n∑
t=1

sin
(

2π
k

n
t
)

sin
(

2π
m

n
t
)

=


0, k = m = 0 or n/2

n/2, k = m 6= 0 and 6= n/2

0, k 6= m
n∑
t=1

cos
(

2π
k

n
t
)

sin
(

2π
m

n
t
)

= 0.
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Proof. Exercise 4.3.

The above lemma implies that the 2[n/2] + 1 vectors in Rn

(sin(2π(k/n)t))1≤t≤n, k = 1, . . . , [n/2],

and
(cos(2π(k/n)t))1≤t≤n, k = 0, . . . , [n/2],

span the space Rn. Note that by Lemma 4.1.2 in the case of n odd
the above 2[n/2] + 1 = n vectors are linearly independent, precisely,
they are orthogonal, whereas in the case of an even sample size n the
vector (sin(2π(k/n)t))1≤t≤n with k = n/2 is the null vector (0, . . . , 0)
and the remaining n vectors are again orthogonal. As a consequence
we obtain that for a given set of data y1, . . . , yn, there exist in any
case uniquely determined coefficients Ak and Bk, k = 0, . . . , [n/2],
with B0 := 0 and, if n is even, Bn/2 = 0 as well, such that

yt =

[n/2]∑
k=0

(
Ak cos

(
2π
k

n
t
)

+Bk sin
(

2π
k

n
t
))

, t = 1, . . . , n. (4.2)

Next we determine these coefficients Ak, Bk. Let to this end v1, . . . ,vn
be arbitrary orthogonal vectors in Rn, precisely, vTi vj = 0 if i 6= j and
= ||vi||2 > 0 if i = j. Then v1, . . . ,vn span Rn and, thus, for any
y ∈ Rn there exists real numbers c1, . . . , cn such that

y =
n∑
k=1

ckvk.

As a consequence we obtain for i = 1, . . . , n

yTvi =
n∑
k=1

ckv
T
k vi = ck||vi||2

and, thus,

ck =
yTvi
||vi||2

, k = 1, . . . , n.
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Applying this to equation (4.2) we obtain from Lemma 4.1.2

Ak =


2
n

∑n
t=1 yt cos

(
2π knt

)
, k = 1, . . . , [(n− 1)/2]

1
n

∑n
t=1 yt cos

(
2π knt

)
, k = 0 and k = n/2, if n is even

Bk =
2

n

n∑
t=1

yt sin
(

2π
k

n
t
)
, k = 1, . . . , [(n− 1)/2]. (4.3)

A popular equivalent formulation of (4.2) is

yt =
Ã0

2
+

[n/2]∑
k=1

(
Ak cos

(
2π
k

n
t
)

+Bk sin
(

2π
k

n
t
))

, t = 1, . . . , n,

(4.4)
with Ak, Bk as in (4.3) for k = 1, . . . , [n/2], Bn/2 = 0 for an even n,
and

Ã0 = 2A0 =
2

n

n∑
t=1

yt = 2ȳ.

Up to the factor 2, the coefficients Ak, Bk coincide with the empirical
covariances C(k/n) and S(k/n), k = 1, . . . , [(n − 1)/2], defined in
(4.1). This follows from the equations (Exercise 4.2)

n∑
t=1

cos
(

2π
k

n
t
)

=
n∑
t=1

sin
(

2π
k

n
t
)

= 0, k = 1, . . . , [n/2]. (4.5)

4.2 The Periodogram
In the preceding section we exactly fitted a harmonic wave with Fou-
rier frequencies λk = k/n, k = 0, . . . , [n/2], to a given series y1, . . . , yn.
Example 4.1.1 shows that a harmonic wave including only two frequen-
cies already fits the Star Data quite well. There is a general tendency
that a time series is governed by different frequencies λ1, . . . , λr with
r < [n/2], which on their part can be approximated by Fourier fre-
quencies k1/n, . . . , kr/n if n is sufficiently large. The question which
frequencies actually govern a time series leads to the intensity of a
frequency λ. This number reflects the influence of the harmonic com-
ponent with frequency λ on the series. The intensity of the Fourier
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frequency λ = k/n, 1 ≤ k ≤ [(n − 1)/2], is defined via its residual
sum of squares. We have by Lemma 4.1.2, (4.5) and (4.4)

n∑
t=1

(
yt − ȳ − Ak cos

(
2π
k

n
t
)
−Bk sin

(
2π
k

n
t
))2

=
n∑
t=1

(yt − ȳ)2 − n

2

(
A2
k +B2

k

)
, k = 1, . . . , [(n− 1)/2],

and
n∑
t=1

(yt − ȳ)2 =
n

2

[n/2]∑
k=1

(
A2
k +B2

k

)
.

The number (n/2)(A2
k+B2

k) = 2n(C2(k/n)+S2(k/n)) is therefore the
contribution of the harmonic component with Fourier frequency k/n,
k = 1, . . . , [(n−1)/2], to the total variation

∑n
t=1(yt− ȳ)2. It is called

the intensity of the frequency k/n. Further insight is gained from the
Fourier analysis in Theorem 4.2.4. For general frequencies λ ∈ R we
define its intensity now by

I(λ) = n
(
C(λ)2 + S(λ)2)

=
1

n

(( n∑
t=1

(yt − ȳ) cos(2πλt)
)2

+
( n∑

t=1

(yt − ȳ) sin(2πλt)
)2
)
.

(4.6)

This function is called the periodogram. The following Theorem im-
plies in particular that it is sufficient to define the periodogram on the
interval [0, 1]. For Fourier frequencies we obtain from (4.3) and (4.5)

I(k/n) =
n

4

(
A2
k +B2

k

)
, k = 1, . . . , [(n− 1)/2].

Theorem 4.2.1. We have

(i) I(0) = 0,

(ii) I is an even function, i.e., I(λ) = I(−λ) for any λ ∈ R,

(iii) I has the period 1.
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Proof. Part (i) follows from sin(0) = 0 and cos(0) = 1, while (ii) is a
consequence of cos(−x) = cos(x), sin(−x) = − sin(x), x ∈ R. Part
(iii) follows from the fact that 2π is the fundamental period of sin and
cos.

Theorem 4.2.1 implies that the function I(λ) is completely determined
by its values on [0, 0.5]. The periodogram is often defined on the scale
[0, 2π] instead of [0, 1] by putting I∗(ω) := 2I(ω/(2π)); this version is,
for example, used in SAS. In view of Theorem 4.2.4 below we prefer
I(λ), however.
The following figure displays the periodogram of the Star Data from
Example 4.1.1. It has two obvious peaks at the Fourier frequencies
21/600 = 0.035 ≈ 1/28.57 and 25/600 = 1/24 ≈ 0.04167. This
indicates that essentially two cycles with period 24 and 28 or 29 are
inherent in the data. A least squares approach for the determination of
the coefficients Ai, Bi, i = 1, 2 with frequencies 1/24 and 1/29 as done
in Program 4.1.1 (star harmonic.sas) then leads to the coefficients in
Example 4.1.1.

Plot 4.2.1: Periodogram of the Star Data.
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--------------------------------------------------------------
COS_01

34.1933
--------------------------------------------------------------

PERIOD COS_01 SIN_01 P LAMBDA

28.5714 -0.91071 8.54977 11089.19 0.035000
24.0000 -0.06291 7.73396 8972.71 0.041667
30.0000 0.42338 -3.76062 2148.22 0.033333
27.2727 -0.16333 2.09324 661.25 0.036667
31.5789 0.20493 -1.52404 354.71 0.031667
26.0870 -0.05822 1.18946 212.73 0.038333

Listing 4.2.1b: The constant Ã0 = 2A0 = 2ȳ and the six Fourier
frequencies λ = k/n with largest I(k/n)-values, their inverses and the
Fourier coefficients pertaining to the Star Data.

1 /* star_periodogram.sas */
2 TITLE1 ’Periodogram’;
3 TITLE2 ’Star Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\star.txt’;
8 INPUT lumen @@;
9

10 /* Compute the periodogram */
11 PROC SPECTRA DATA=data1 COEF P OUT=data2;
12 VAR lumen;
13

14 /* Adjusting different periodogram definitions */
15 DATA data3;
16 SET data2(FIRSTOBS=2);
17 p=P_01/2;
18 lambda=FREQ/(2*CONSTANT(’PI’));
19 DROP P_01 FREQ;
20

21 /* Graphical options */
22 SYMBOL1 V=NONE C=GREEN I=JOIN;
23 AXIS1 LABEL=(’I(’ F=CGREEK ’l)’);
24 AXIS2 LABEL=(F=CGREEK ’l’);
25

26 /* Plot the periodogram */
27 PROC GPLOT DATA=data3(OBS=50);
28 PLOT p*lambda=1 / VAXIS=AXIS1 HAXIS=AXIS2;
29

30 /* Sort by periodogram values */
31 PROC SORT DATA=data3 OUT=data4;
32 BY DESCENDING p;
33

34 /* Print largest periodogram values */
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35 PROC PRINT DATA=data2(OBS=1) NOOBS;
36 VAR COS_01;
37 PROC PRINT DATA=data4(OBS=6) NOOBS;
38 RUN; QUIT;

The first step is to read the star data from
an external file into a data set. Using the
SAS procedure SPECTRA with the options
P (periodogram), COEF (Fourier coefficients),
OUT=data2 and the VAR statement specifying
the variable of interest, an output data set is
generated. It contains periodogram data P 01
evaluated at the Fourier frequencies, a FREQ
variable for this frequencies, the pertaining pe-
riod in the variable PERIOD and the variables
COS 01 and SIN 01 with the coefficients for
the harmonic waves. Because SAS uses differ-
ent definitions for the frequencies and the peri-
odogram, here in data3 new variables lambda
(dividing FREQ by 2π to eliminate an additional
factor 2π) and p (dividing P 01 by 2) are created

and the no more needed ones are dropped. By
means of the data set option FIRSTOBS=2 the
first observation of data2 is excluded from the
resulting data set.

The following PROC GPLOT just takes the first
50 observations of data3 into account. This
means a restriction of lambda up to 50/600 =
1/12, the part with the greatest peaks in the pe-
riodogram.

The procedure SORT generates a new data set
data4 containing the same observations as
the input data set data3, but they are sorted
in descending order of the periodogram values.
The two PROC PRINT statements at the end
make SAS print to datasets data2 and data4.

The first part of the output is the coefficient Ã0 which is equal to
two times the mean of the lumen data. The results for the Fourier
frequencies with the six greatest periodogram values constitute the
second part of the output. Note that the meaning of COS 01 and
SIN 01 are slightly different from the definitions of Ak and Bk in
(4.3), because SAS lets the index run from 0 to n− 1 instead of 1 to
n.

The Fourier Transform
From Euler’s equation eiz = cos(z) + i sin(z), z ∈ R, we obtain for
λ ∈ R

D(λ) := C(λ)− iS(λ) =
1

n

n∑
t=1

(yt − ȳ)e−i2πλt.

The periodogram is a function of D(λ), since I(λ) = n|D(λ)|2. Unlike
the periodogram, the number D(λ) contains the complete information
about C(λ) and S(λ), since both values can be recovered from the
complex number D(λ), being its real and negative imaginary part. In
the following we view the data y1, . . . , yn again as a clipping from an
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infinite series yt, t ∈ Z. Let a := (at)t∈Z be an absolutely summable
sequence of real numbers. For such a sequence a the complex valued
function

fa(λ) =
∑
t∈Z

ate
−i2πλt, λ ∈ R,

is said to be its Fourier transform. It links the empirical autoco-
variance function to the periodogram as it will turn out in Theorem
4.2.3 that the latter is the Fourier transform of the first. Note that∑

t∈Z |ate−i2πλt| =
∑

t∈Z |at| < ∞, since |eix| = 1 for any x ∈ R. The
Fourier transform of at = (yt − ȳ)/n, t = 1, . . . , n, and at = 0 else-
where is then given by D(λ). The following elementary properties of
the Fourier transform are immediate consequences of the arguments
in the proof of Theorem 4.2.1. In particular we obtain that the Fourier
transform is already determined by its values on [0, 0.5].

Theorem 4.2.2. We have

(i) fa(0) =
∑

t∈Z at,

(ii) fa(−λ) and fa(λ) are conjugate complex numbers i.e., fa(−λ) =

fa(λ),

(iii) fa has the period 1.

Autocorrelation Function and Periodogram
Information about cycles that are inherent in given data, can also be
deduced from the empirical autocorrelation function. The following
figure displays the autocorrelation function of the Bankruptcy Data,
introduced in Exercise 1.20.
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Plot 4.2.2: Autocorrelation function of the Bankruptcy Data.

1 /* bankruptcy_correlogram.sas */
2 TITLE1 ’Correlogram’;
3 TITLE2 ’Bankruptcy Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\bankrupt.txt’;
8 INPUT year bankrupt;
9

10 /* Compute autocorrelation function */
11 PROC ARIMA DATA=data1;
12 IDENTIFY VAR=bankrupt NLAG=64 OUTCOV=corr NOPRINT;
13

14 /* Graphical options */
15 AXIS1 LABEL=(’r(k)’);
16 AXIS2 LABEL=(’k’);
17 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.4 W=1;
18

19 /* Plot auto correlation function */
20 PROC GPLOT DATA=corr;
21 PLOT CORR*LAG / VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
22 RUN; QUIT;

After reading the data from an external file
into a data step, the procedure ARIMA calcu-
lates the empirical autocorrelation function and

stores them into a new data set. The correlo-
gram is generated using PROC GPLOT.
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The next figure displays the periodogram of the Bankruptcy Data.

Plot 4.2.3: Periodogram of the Bankruptcy Data.

1 /* bankruptcy_periodogram.sas */
2 TITLE1 ’Periodogram’;
3 TITLE2 ’Bankruptcy Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\bankrupt.txt’;
8 INPUT year bankrupt;
9

10 /* Compute the periodogram */
11 PROC SPECTRA DATA=data1 P OUT=data2;
12 VAR bankrupt;
13

14 /* Adjusting different periodogram definitions */
15 DATA data3;
16 SET data2(FIRSTOBS=2);
17 p=P_01/2;
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18 lambda=FREQ/(2*CONSTANT(’PI’));
19

20 /* Graphical options */
21 SYMBOL1 V=NONE C=GREEN I=JOIN;
22 AXIS1 LABEL=(’I’ F=CGREEK ’(l)’) ;
23 AXIS2 ORDER=(0 TO 0.5 BY 0.05) LABEL=(F=CGREEK ’l’);
24

25 /* Plot the periodogram */
26 PROC GPLOT DATA=data3;
27 PLOT p*lambda / VAXIS=AXIS1 HAXIS=AXIS2;
28 RUN; QUIT;

This program again first reads the data
and then starts a spectral analysis by
PROC SPECTRA. Due to the reasons men-
tioned in the comments to Program 4.2.1
(star periodogram.sas) there are some trans-

formations of the periodogram and the fre-
quency values generated by PROC SPECTRA
done in data3. The graph results from the
statements in PROC GPLOT.

The autocorrelation function of the Bankruptcy Data has extreme
values at about multiples of 9 years, which indicates a period of length
9. This is underlined by the periodogram in Plot 4.2.3, which has a
peak at λ = 0.11, corresponding to a period of 1/0.11 ∼ 9 years
as well. As mentioned above, there is actually a close relationship
between the empirical autocovariance function and the periodogram.
The corresponding result for the theoretical autocovariances is given
in Chapter 5.

Theorem 4.2.3. Denote by c the empirical autocovariance function
of y1, . . . , yn, i.e., c(k) = 1

n

∑n−k
j=1 (yj − ȳ)(yj+k − ȳ), k = 0, . . . , n− 1,

where ȳ := n−1∑n
j=1 yj. Then we have with c(−k) := c(k)

I(λ) = c(0) + 2
n−1∑
k=1

c(k) cos(2πλk)

=
n−1∑

k=−(n−1)

c(k)e−i2πλk.

Proof. From the equation cos(x1) cos(x2) + sin(x1) sin(x2) = cos(x1−
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x2) for x1, x2 ∈ R we obtain

I(λ) =
1

n

n∑
s=1

n∑
t=1

(ys − ȳ)(yt − ȳ)

×
(

cos(2πλs) cos(2πλt) + sin(2πλs) sin(2πλt)
)

=
1

n

n∑
s=1

n∑
t=1

ast,

where ast := (ys − ȳ)(yt − ȳ) cos(2πλ(s − t)). Since ast = ats and
cos(0) = 1 we have moreover

I(λ) =
1

n

n∑
t=1

att +
2

n

n−1∑
k=1

n−k∑
j=1

ajj+k

=
1

n

n∑
t=1

(yt − ȳ)2 + 2
n−1∑
k=1

(1

n

n−k∑
j=1

(yj − ȳ)(yj+k − ȳ)
)

cos(2πλk)

= c(0) + 2
n−1∑
k=1

c(k) cos(2πλk).

The complex representation of the periodogram is then obvious:

n−1∑
k=−(n−1)

c(k)e−i2πλk = c(0) +
n−1∑
k=1

c(k)
(
ei2πλk + e−i2πλk

)
= c(0) +

n−1∑
k=1

c(k)2 cos(2πλk) = I(λ).

Inverse Fourier Transform
The empirical autocovariance function can be recovered from the pe-
riodogram, which is the content of our next result. Since the pe-
riodogram is the Fourier transform of the empirical autocovariance
function, this result is a special case of the inverse Fourier transform
in Theorem 4.2.5 below.
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Theorem 4.2.4. The periodogram

I(λ) =
n−1∑

k=−(n−1)

c(k)e−i2πλk, λ ∈ R,

satisfies the inverse formula

c(k) =

∫ 1

0
I(λ)ei2πλk dλ, |k| ≤ n− 1.

In particular for k = 0 we obtain

c(0) =

∫ 1

0
I(λ) dλ.

The sample variance c(0) = 1
n

∑n
j=1(yj − ȳ)2 equals, therefore, the

area under the curve I(λ), 0 ≤ λ ≤ 1. The integral
∫ λ2

λ1
I(λ) dλ

can be interpreted as that portion of the total variance c(0), which
is contributed by the harmonic waves with frequencies λ ∈ [λ1, λ2],
where 0 ≤ λ1 < λ2 ≤ 1. The periodogram consequently shows the
distribution of the total variance among the frequencies λ ∈ [0, 1]. A
peak of the periodogram at a frequency λ0 implies, therefore, that a
large part of the total variation c(0) of the data can be explained by
the harmonic wave with that frequency λ0.
The following result is the inverse formula for general Fourier trans-
forms.

Theorem 4.2.5. For an absolutely summable sequence a := (at)t∈Z
with Fourier transform fa(λ) =

∑
t∈Z ate

−i2πλt, λ ∈ R, we have

at =

∫ 1

0
fa(λ)ei2πλt dλ, t ∈ Z.

Proof. The dominated convergence theorem implies∫ 1

0
fa(λ)ei2πλt dλ =

∫ 1

0

(∑
s∈Z

ase
−i2πλs

)
ei2πλt dλ

=
∑
s∈Z

as

∫ 1

0
ei2πλ(t−s) dλ = at,



4.2 The Periodogram 153

since ∫ 1

0
ei2πλ(t−s) dλ =

{
1, if s = t

0, if s 6= t.

The inverse Fourier transformation shows that the complete sequence
(at)t∈Z can be recovered from its Fourier transform. This implies
in particular that the Fourier transforms of absolutely summable se-
quences are uniquely determined. The analysis of a time series in
the frequency domain is, therefore, equivalent to its analysis in the
time domain, which is based on an evaluation of its autocovariance
function.

Aliasing
Suppose that we observe a continuous time process (Zt)t∈R only through
its values at k∆, k ∈ Z, where ∆ > 0 is the sampling interval,
i.e., we actually observe (Yk)k∈Z = (Zk∆)k∈Z. Take, for example,
Zt := cos(2π(9/11)t), t ∈ R. The following figure shows that at
k ∈ Z, i.e., ∆ = 1, the observations Zk coincide with Xk, where
Xt := cos(2π(2/11)t), t ∈ R. With the sampling interval ∆ = 1,
the observations Zk with high frequency 9/11 can, therefore, not be
distinguished from the Xk, which have low frequency 2/11.
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Plot 4.2.4: Aliasing of cos(2π(9/11)k) and cos(2π(2/11)k).

1 /* aliasing.sas */
2 TITLE1 ’Aliasing’;
3

4 /* Generate harmonic waves */
5 DATA data1;
6 DO t=1 TO 14 BY .01;
7 y1=COS(2*CONSTANT(’PI’)*2/11*t);
8 y2=COS(2*CONSTANT(’PI’)*9/11*t);
9 OUTPUT;

10 END;
11

12 /* Generate points of intersection */
13 DATA data2;
14 DO t0=1 TO 14;
15 y0=COS(2*CONSTANT(’PI’)*2/11*t0);
16 OUTPUT;
17 END;
18

19 /* Merge the data sets */
20 DATA data3;
21 MERGE data1 data2;
22

23 /* Graphical options */
24 SYMBOL1 V=DOT C=GREEN I=NONE H=.8;
25 SYMBOL2 V=NONE C=RED I=JOIN;
26 AXIS1 LABEL=NONE;
27 AXIS2 LABEL=(’t’);
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28

29 /* Plot the curves with point of intersection */
30 PROC GPLOT DATA=data3;
31 PLOT y0*t0=1 y1*t=2 y2*t=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
32 RUN; QUIT;

In the first data step a tight grid for the cosine
waves with frequencies 2/11 and 9/11 is gen-
erated. In the second data step the values of
the cosine wave with frequency 2/11 are gen-
erated just for integer values of t symbolizing
the observation points.

After merging the two data sets the two waves
are plotted using the JOIN option in the
SYMBOL statement while the values at the ob-
servation points are displayed in the same
graph by dot symbols.

This phenomenon that a high frequency component takes on the val-
ues of a lower one, is called aliasing . It is caused by the choice of the
sampling interval ∆, which is 1 in Plot 4.2.4. If a series is not just a
constant, then the shortest observable period is 2∆. The highest ob-
servable frequency λ∗ with period 1/λ∗, therefore, satisfies 1/λ∗ ≥ 2∆,
i.e., λ∗ ≤ 1/(2∆). This frequency 1/(2∆) is known as the Nyquist fre-
quency . The sampling interval ∆ should, therefore, be chosen small
enough, so that 1/(2∆) is above the frequencies under study. If, for
example, a process is a harmonic wave with frequencies λ1, . . . , λp,
then ∆ should be chosen such that λi ≤ 1/(2∆), 1 ≤ i ≤ p, in or-
der to visualize p different frequencies. For the periodic curves in
Plot 4.2.4 this means to choose 9/11 ≤ 1/(2∆) or ∆ ≤ 11/18.

Exercises
4.1. Let y(t) = A cos(2πλt) +B sin(2πλt) be a harmonic component.
Show that y can be written as y(t) = α cos(2πλt− ϕ), where α is the
amplitiude, i.e., the maximum departure of the wave from zero and ϕ
is the phase displacement.

4.2. Show that

n∑
t=1

cos(2πλt) =

{
n, λ ∈ Z
cos(πλ(n+ 1)) sin(πλn)

sin(πλ) , λ 6∈ Z
n∑
t=1

sin(2πλt) =

{
0, λ ∈ Z
sin(πλ(n+ 1)) sin(πλn)

sin(πλ) , λ 6∈ Z.
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Hint: Compute
∑n

t=1 e
i2πλt, where eiϕ = cos(ϕ) + i sin(ϕ) is the com-

plex valued exponential function.

4.3. Verify Lemma 4.1.2. Hint: Exercise 4.2.

4.4. Suppose that the time series (yt)t satisfies the additive model
with seasonal component

s(t) =
s∑

k=1

Ak cos
(

2π
k

s
t
)

+
s∑

k=1

Bk sin
(

2π
k

s
t
)
.

Show that s(t) is eliminated by the seasonal differencing ∆syt = yt −
yt−s.

4.5. Fit a harmonic component with frequency λ to a time series
y1, . . . , yN , where λ ∈ Z and λ− 0.5 ∈ Z. Compute the least squares
estimator and the pertaining residual sum of squares.

4.6. Put yt = t, t = 1, . . . , n. Show that

I(k/n) =
n

4 sin2(πk/n)
, k = 1, . . . , [(n− 1)/2].

Hint: Use the equations

n−1∑
t=1

t sin(θt) =
sin(nθ)

4 sin2(θ/2)
− n cos((n− 0.5)θ)

2 sin(θ/2)

n−1∑
t=1

t cos(θt) =
n sin((n− 0.5)θ)

2 sin(θ/2)
− 1− cos(nθ)

4 sin2(θ/2)
.

4.7. (Unemployed1 Data) Plot the periodogram of the first order dif-
ferences of the numbers of unemployed in the building trade as intro-
duced in Example 1.1.1.

4.8. (Airline Data) Plot the periodogram of the variance stabilized
and trend adjusted Airline Data, introduced in Example 1.3.1. Add
a seasonal adjustment and compare the periodograms.

4.9. The contribution of the autocovariance c(k), k ≥ 1, to the pe-
riodogram can be illustrated by plotting the functions ± cos(2πλk),
λ ∈ [0.5].
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(i) Which conclusion about the intensities of large or small frequen-
cies can be drawn from a positive value c(1) > 0 or a negative
one c(1) < 0?

(ii) Which effect has an increase of |c(2)| if all other parameters
remain unaltered?

(iii) What can you say about the effect of an increase of c(k) on the
periodogram at the values 40, 1/k, 2/k, 3/k, . . . and the inter-
mediate values 1/2k, 3/(2k), 5/(2k)? Illustrate the effect at a
time series with seasonal component k = 12.

4.10. Establish a version of the inverse Fourier transform in real
terms.

4.11. Let a = (at)t∈Z and b = (bt)t∈Z be absolute summable se-
quences.

(i) Show that for αa+ βb := (αat + βbt)t∈Z, α, β ∈ R,

fαa+βb(λ) = αfa(λ) + βfb(λ).

(ii) For ab := (atbt)t∈Z we have

fab(λ) = fa ∗ fb(λ) :=

∫ 1

0
fa(µ)fb(λ− µ) dµ.

(iii) Show that for a ∗ b := (
∑

s∈Z asbt−s)t∈Z (convolution)

fa∗b(λ) = fa(λ)fb(λ).

4.12. (Fast Fourier Transform (FFT)) The Fourier transform of a fi-
nite sequence a0, a1, . . . , aN−1 can be represented under suitable con-
ditions as the composition of Fourier transforms. Put

f(s/N) =
N−1∑
t=0

ate
−i2πst/N , s = 0, . . . , N − 1,

which is the Fourier transform of length N . Suppose that N = KM
with K,M ∈ N. Show that f can be represented as Fourier transform
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of length K, computed for a Fourier transform of length M .
Hint: Each t, s ∈ {0, . . . , N − 1} can uniquely be written as

t = t0 + t1K, t0 ∈ {0, . . . , K − 1}, t1 ∈ {0, . . . ,M − 1}
s = s0 + s1M, s0 ∈ {0, . . . ,M − 1}, s1 ∈ {0, . . . , K − 1}.

Sum over t0 and t1.

4.13. (Star Data) Suppose that the Star Data are only observed
weekly (i.e., keep only every seventh observation). Is an aliasing effect
observable?



Chapter

5The Spectrum of a
Stationary Process

In this chapter we investigate the spectrum of a real valued station-
ary process, which is the Fourier transform of its (theoretical) auto-
covariance function. Its empirical counterpart, the periodogram, was
investigated in the preceding sections, cf. Theorem 4.2.3.
Let (Yt)t∈Z be a (real valued) stationary process with an absolutely
summable autocovariance function γ(t), t ∈ Z. Its Fourier transform

f(λ) :=
∑
t∈Z

γ(t)e−i2πλt = γ(0) + 2
∑
t∈N

γ(t) cos(2πλt), λ ∈ R,

is called spectral density or spectrum of the process (Yt)t∈Z. By the
inverse Fourier transform in Theorem 4.2.5 we have

γ(t) =

∫ 1

0
f(λ)ei2πλt dλ =

∫ 1

0
f(λ) cos(2πλt) dλ.

For t = 0 we obtain

γ(0) =

∫ 1

0
f(λ) dλ,

which shows that the spectrum is a decomposition of the variance
γ(0). In Section 5.3 we will in particular compute the spectrum of
an ARMA-process. As a preparatory step we investigate properties
of spectra for arbitrary absolutely summable filters.
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5.1 Characterizations of Autocovariance
Functions

Recall that the autocovariance function γ : Z → R of a stationary
process (Yt)t∈Z is given by

γ(h) = E(Yt+hYt)− E(Yt+h) E(Yt), h ∈ Z,

with the properties

γ(0) ≥ 0, |γ(h)| ≤ γ(0), γ(h) = γ(−h), h ∈ Z. (5.1)

The following result characterizes an autocovariance function in terms
of positive semidefiniteness.

Theorem 5.1.1. A symmetric function K : Z → R is the autoco-
variance function of a stationary process (Yt)t∈Z iff K is a positive
semidefinite function, i.e., K(−n) = K(n) and∑

1≤r,s≤n
xrK(r − s)xs ≥ 0 (5.2)

for arbitrary n ∈ N and x1, . . . , xn ∈ R.

Proof. It is easy to see that (5.2) is a necessary condition for K to be
the autocovariance function of a stationary process, see Exercise 5.19.
It remains to show that (5.2) is sufficient, i.e., we will construct a
stationary process, whose autocovariance function is K.
We will define a family of finite-dimensional normal distributions,
which satisfies the consistency condition of Kolmogorov’s theorem, cf.
Brockwell and Davis (1991, Theorem 1.2.1). This result implies the
existence of a process (Vt)t∈Z, whose finite dimensional distributions
coincide with the given family.
Define the n× n-matrix

K(n) :=
(
K(r − s)

)
1≤r,s≤n,

which is positive semidefinite. Consequently there exists an n-dimen-
sional normal distributed random vector (V1, . . . , Vn) with mean vector
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zero and covariance matrix K(n). Define now for each n ∈ N and t ∈ Z
a distribution function on Rn by

Ft+1,...,t+n(v1, . . . , vn) := P{V1 ≤ v1, . . . , Vn ≤ vn}.

This defines a family of distribution functions indexed by consecutive
integers. Let now t1 < · · · < tm be arbitrary integers. Choose t ∈ Z
and n ∈ N such that ti = t + ni, where 1 ≤ n1 < · · · < nm ≤ n. We
define now

Ft1,...,tm((vi)1≤i≤m) := P{Vni ≤ vi, 1 ≤ i ≤ m}.

Note that Ft1,...,tm does not depend on the special choice of t and n
and thus, we have defined a family of distribution functions indexed
by t1 < · · · < tm on Rm for each m ∈ N, which obviously satisfies the
consistency condition of Kolmogorov’s theorem. This result implies
the existence of a process (Vt)t∈Z, whose finite dimensional distribution
at t1 < · · · < tm has distribution function Ft1,...,tm. This process
has, therefore, mean vector zero and covariances E(Vt+hVt) = K(h),
h ∈ Z.

Spectral Distribution Function and Spectral Density
The preceding result provides a characterization of an autocovariance
function in terms of positive semidefiniteness. The following char-
acterization of positive semidefinite functions is known as Herglotz’s
theorem. We use in the following the notation

∫ 1
0 g(λ) dF (λ) in place

of
∫

(0,1] g(λ) dF (λ).

Theorem 5.1.2. A symmetric function γ : Z→ R is positive semidef-
inite iff it can be represented as an integral

γ(h) =

∫ 1

0
ei2πλh dF (λ) =

∫ 1

0
cos(2πλh) dF (λ), h ∈ Z, (5.3)

where F is a real valued measure generating function on [0, 1] with
F (0) = 0. The function F is uniquely determined.

The uniquely determined function F , which is a right-continuous, in-
creasing and bounded function, is called the spectral distribution func-
tion of γ. If F has a derivative f and, thus, F (λ) = F (λ) − F (0) =
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∫ λ
0 f(x) dx for 0 ≤ λ ≤ 1, then f is called the spectral density of γ.

Note that the property
∑

h≥0 |γ(h)| <∞ already implies the existence
of a spectral density of γ, cf. Theorem 4.2.5 and the proof of Corollary
5.1.5.
Recall that γ(0) =

∫ 1
0 dF (λ) = F (1) and thus, the autocorrelation

function ρ(h) = γ(h)/γ(0) has the above integral representation, but
with F replaced by the probability distribution function F/γ(0).

Proof of Theorem 5.1.2. We establish first the uniqueness of F . Let
G be another measure generating function with G(λ) = 0 for λ ≤ 0
and constant for λ ≥ 1 such that

γ(h) =

∫ 1

0
ei2πλh dF (λ) =

∫ 1

0
ei2πλh dG(λ), h ∈ Z.

Let now ψ be a continuous function on [0, 1]. From calculus we know
(cf. Rudin, 1986, Section 4.24) that we can find for arbitrary ε > 0

a trigonometric polynomial pε(λ) =
∑N

h=−N ahe
i2πλh, 0 ≤ λ ≤ 1, such

that
sup

0≤λ≤1
|ψ(λ)− pε(λ)| ≤ ε.

As a consequence we obtain that∫ 1

0
ψ(λ) dF (λ) =

∫ 1

0
pε(λ) dF (λ) + r1(ε)

=

∫ 1

0
pε(λ) dG(λ) + r1(ε)

=

∫ 1

0
ψ(λ) dG(λ) + r2(ε),

where ri(ε)→ 0 as ε→ 0, i = 1, 2, and, thus,∫ 1

0
ψ(λ) dF (λ) =

∫ 1

0
ψ(λ) dG(λ).

Since ψ was an arbitrary continuous function, this in turn together
with F (0) = G(0) = 0 implies F = G.
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Suppose now that γ has the representation (5.3). We have for arbi-
trary xi ∈ R, i = 1, . . . , n∑

1≤r,s≤n
xrγ(r − s)xs =

∫ 1

0

∑
1≤r,s≤n

xrxse
i2πλ(r−s) dF (λ)

=

∫ 1

0

∣∣∣ n∑
r=1

xre
i2πλr

∣∣∣2 dF (λ) ≥ 0,

i.e., γ is positive semidefinite.
Suppose conversely that γ : Z→ R is a positive semidefinite function.
This implies that for 0 ≤ λ ≤ 1 and N ∈ N (Exercise 5.2)

fN(λ) : =
1

N

∑
1≤r,s≤N

e−i2πλrγ(r − s)ei2πλs

=
1

N

∑
|m|<N

(N − |m|)γ(m)e−i2πλm ≥ 0.

Put now

FN(λ) :=

∫ λ

0
fN(x) dx, 0 ≤ λ ≤ 1.

Then we have for each h ∈ Z∫ 1

0
ei2πλh dFN(λ) =

∑
|m|<N

(
1− |m|

N

)
γ(m)

∫ 1

0
ei2πλ(h−m) dλ

=

{(
1− |h|N

)
γ(h), if |h| < N

0, if |h| ≥ N.
(5.4)

Since FN(1) = γ(0) < ∞ for any N ∈ N, we can apply Helly’s selec-
tion theorem (cf. Billingsley, 1968, page 226ff) to deduce the existence
of a measure generating function F̃ and a subsequence (FNk)k such
that FNk converges weakly to F̃ i.e.,∫ 1

0
g(λ) dFNk(λ)

k→∞−→
∫ 1

0
g(λ) dF̃ (λ)

for every continuous and bounded function g : [0, 1]→ R (cf. Billings-
ley, 1968, Theorem 2.1). Put now F (λ) := F̃ (λ)− F̃ (0). Then F is a
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measure generating function with F (0) = 0 and∫ 1

0
g(λ) dF̃ (λ) =

∫ 1

0
g(λ) dF (λ).

If we replace N in (5.4) by Nk and let k tend to infinity, we now obtain
representation (5.3).

Example 5.1.3. A white noise (εt)t∈Z has the autocovariance function

γ(h) =

{
σ2, h = 0

0, h ∈ Z \ {0}.

Since ∫ 1

0
σ2ei2πλh dλ =

{
σ2, h = 0

0, h ∈ Z \ {0},
the process (εt) has by Theorem 5.1.2 the constant spectral density
f(λ) = σ2, 0 ≤ λ ≤ 1. This is the name giving property of the white
noise process: As the white light is characteristically perceived to
belong to objects that reflect nearly all incident energy throughout the
visible spectrum, a white noise process weighs all possible frequencies
equally.

Corollary 5.1.4. A symmetric function γ : Z→ R is the autocovari-
ance function of a stationary process (Yt)t∈Z, iff it satisfies one of the
following two (equivalent) conditions:

(i) γ(h) =
∫ 1

0 e
i2πλh dF (λ), h ∈ Z, where F is a measure generating

function on [0, 1] with F (0) = 0.

(ii)
∑

1≤r,s≤n xrγ(r − s)xs ≥ 0 for each n ∈ N and x1, . . . , xn ∈ R.

Proof. Theorem 5.1.2 shows that (i) and (ii) are equivalent. The
assertion is then a consequence of Theorem 5.1.1.

Corollary 5.1.5. A symmetric function γ : Z→ R with
∑

t∈Z |γ(t)| <
∞ is the autocovariance function of a stationary process iff

f(λ) :=
∑
t∈Z

γ(t)e−i2πλt ≥ 0, λ ∈ [0, 1].

The function f is in this case the spectral density of γ.
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Proof. Suppose first that γ is an autocovariance function. Since γ is in
this case positive semidefinite by Theorem 5.1.1, and

∑
t∈Z |γ(t)| <∞

by assumption, we have (Exercise 5.2)

0 ≤ fN(λ) : =
1

N

∑
1≤r,s≤N

e−i2πλrγ(r − s)ei2πλs

=
∑
|t|<N

(
1− |t|

N

)
γ(t)e−i2πλt → f(λ) as N →∞,

see Exercise 5.8. The function f is consequently nonnegative. The in-
verse Fourier transform in Theorem 4.2.5 implies γ(t) =

∫ 1
0 f(λ)ei2πλt dλ,

t ∈ Z i.e., f is the spectral density of γ.
Suppose on the other hand that f(λ) =

∑
t∈Z γ(t)ei2πλt ≥ 0, 0 ≤

λ ≤ 1. The inverse Fourier transform implies γ(t) =
∫ 1

0 f(λ)ei2πλt dλ

=
∫ 1

0 e
i2πλt dF (λ), where F (λ) =

∫ λ
0 f(x) dx, 0 ≤ λ ≤ 1. Thus we

have established representation (5.3), which implies that γ is positive
semidefinite, and, consequently, γ is by Corollary 5.1.4 the autoco-
variance function of a stationary process.

Example 5.1.6. Choose a number ρ ∈ R. The function

γ(h) =


1, if h = 0

ρ, if h ∈ {−1, 1}
0, elsewhere

is the autocovariance function of a stationary process iff |ρ| ≤ 0.5.
This follows from

f(λ) =
∑
t∈Z

γ(t)ei2πλt

= γ(0) + γ(1)ei2πλ + γ(−1)e−i2πλ

= 1 + 2ρ cos(2πλ) ≥ 0

for λ ∈ [0, 1] iff |ρ| ≤ 0.5. Note that the function γ is the autocorre-
lation function of an MA(1)-process, cf. Example 2.2.2.

The spectral distribution function of a stationary process satisfies (Ex-
ercise 5.10)

F (0.5 + λ)− F (0.5−) = F (0.5)− F ((0.5− λ)−), 0 ≤ λ < 0.5,
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where F (x−) := limε↓0 F (x − ε) is the left-hand limit of F at x ∈
(0, 1]. If F has a derivative f , we obtain from the above symmetry
f(0.5 + λ) = f(0.5− λ) or, equivalently, f(1− λ) = f(λ) and, hence,

γ(h) =

∫ 1

0
cos(2πλh) dF (λ) = 2

∫ 0.5

0
cos(2πλh)f(λ) dλ.

The autocovariance function of a stationary process is, therefore, de-
termined by the values f(λ), 0 ≤ λ ≤ 0.5, if the spectral density
exists. Recall, moreover, that the smallest nonconstant period P0
visible through observations evaluated at time points t = 1, 2, . . . is
P0 = 2 i.e., the largest observable frequency is the Nyquist frequency
λ0 = 1/P0 = 0.5, cf. the end of Section 4.2. Hence, the spectral
density f(λ) matters only for λ ∈ [0, 0.5].

Remark 5.1.7. The preceding discussion shows that a function f :
[0, 1]→ R is the spectral density of a stationary process iff f satisfies
the following three conditions

(i) f(λ) ≥ 0,

(ii) f(λ) = f(1− λ),

(iii)
∫ 1

0 f(λ) dλ <∞.

5.2 Linear Filters and Frequencies
The application of a linear filter to a stationary time series has a quite
complex effect on its autocovariance function, see Theorem 2.1.6. Its
effect on the spectral density, if it exists, turns, however, out to be

quite simple. We use in the following again the notation
∫ λ

0 g(x) dF (x)
in place of

∫
(0,λ] g(x) dF (x).

Theorem 5.2.1. Let (Zt)t∈Z be a stationary process with spectral
distribution function FZ and let (at)t∈Z be an absolutely summable
filter with Fourier transform fa. The linear filtered process Yt :=∑

u∈Z auZt−u, t ∈ Z, then has the spectral distribution function

FY (λ) :=

∫ λ

0
|fa(x)|2 dFZ(x), 0 ≤ λ ≤ 1. (5.5)
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If in addition (Zt)t∈Z has a spectral density fZ, then

fY (λ) := |fa(λ)|2fZ(λ), 0 ≤ λ ≤ 1, (5.6)

is the spectral density of (Yt)t∈Z.

Proof. Theorem 2.1.6 yields that (Yt)t∈Z is stationary with autoco-
variance function

γY (t) =
∑
u∈Z

∑
w∈Z

auawγZ(t− u+ w), t ∈ Z,

where γZ is the autocovariance function of (Zt). Its spectral repre-
sentation (5.3) implies

γY (t) =
∑
u∈Z

∑
w∈Z

auaw

∫ 1

0
ei2πλ(t−u+w) dFZ(λ)

=

∫ 1

0

(∑
u∈Z

aue
−i2πλu

)(∑
w∈Z

awe
i2πλw

)
ei2πλt dFZ(λ)

=

∫ 1

0
|fa(λ)|2ei2πλt dFZ(λ)

=

∫ 1

0
ei2πλt dFY (λ).

Theorem 5.1.2 now implies that FY is the uniquely determined spec-
tral distribution function of (Yt)t∈Z. The second to last equality yields
in addition the spectral density (5.6).

Transfer Function and Power Transfer Function
Since the spectral density is a measure of intensity of a frequency λ
inherent in a stationary process (see the discussion of the periodogram
in Section 4.2), the effect (5.6) of applying a linear filter (at) with
Fourier transform fa can easily be interpreted. While the intensity of λ
is diminished by the filter (at) iff |fa(λ)| < 1, its intensity is amplified
iff |fa(λ)| > 1. The Fourier transform fa of (at) is, therefore, also
called transfer function and the function ga(λ) := |fa(λ)|2 is referred
to as the gain or power transfer function of the filter (at)t∈Z.
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Example 5.2.2. The simple moving average of length three

au =

{
1/3, u ∈ {−1, 0, 1}
0 elsewhere

has the transfer function

fa(λ) =
1

3
+

2

3
cos(2πλ)

and the power transfer function

ga(λ) =

1, λ = 0(
sin(3πλ)
3 sin(πλ)

)2
, λ ∈ (0, 0.5]

(see Exercise 5.13 and Theorem 4.2.2). This power transfer function
is plotted in Plot 5.2.1 below. It shows that frequencies λ close to
zero i.e., those corresponding to a large period, remain essentially
unaltered. Frequencies λ close to 0.5, which correspond to a short
period, are, however, damped by the approximate factor 0.1, when the
moving average (au) is applied to a process. The frequency λ = 1/3
is completely eliminated, since ga(1/3) = 0.
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Plot 5.2.1: Power transfer function of the simple moving average of
length three.

1 /* power_transfer_sma3.sas */
2 TITLE1 ’Power transfer function’;
3 TITLE2 ’of the simple moving average of length 3’;
4

5 /* Compute power transfer function */
6 DATA data1;
7 DO lambda=.001 TO .5 BY .001;
8 g=(SIN(3*CONSTANT(’PI’)*lambda)/(3*SIN(CONSTANT(’PI’)*lambda)))

↪→**2;
9 OUTPUT;

10 END;
11

12 /* Graphical options */
13 AXIS1 LABEL=(’g’ H=1 ’a’ H=2 ’(’ F=CGREEK ’l)’);
14 AXIS2 LABEL=(F=CGREEK ’l’);
15 SYMBOL1 V=NONE C=GREEN I=JOIN;
16

17 /* Plot power transfer function */
18 PROC GPLOT DATA=data1;
19 PLOT g*lambda / VAXIS=AXIS1 HAXIS=AXIS2;
20 RUN; QUIT;
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Example 5.2.3. The first order difference filter

au =


1, u = 0

−1, u = 1

0 elsewhere

has the transfer function

fa(λ) = 1− e−i2πλ.

Since
fa(λ) = e−iπλ

(
eiπλ − e−iπλ

)
= ie−iπλ2 sin(πλ),

its power transfer function is

ga(λ) = 4 sin2(πλ).

The first order difference filter, therefore, damps frequencies close to
zero but amplifies those close to 0.5.
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Plot 5.2.2: Power transfer function of the first order difference filter.

Example 5.2.4. The preceding example immediately carries over to
the seasonal difference filter of arbitrary length s ≥ 0 i.e.,

a(s)
u =


1, u = 0

−1, u = s

0 elsewhere,

which has the transfer function

fa(s)(λ) = 1− e−i2πλs

and the power transfer function

ga(s)(λ) = 4 sin2(πλs).
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Plot 5.2.3: Power transfer function of the seasonal difference filter of
order 12.

Since sin2(x) = 0 iff x = kπ and sin2(x) = 1 iff x = (2k + 1)π/2,
k ∈ Z, the power transfer function ga(s)(λ) satisfies for k ∈ Z

ga(s)(λ) =

{
0, iff λ = k/s

4 iff λ = (2k + 1)/(2s).

This implies, for example, in the case of s = 12 that those frequencies,
which are multiples of 1/12 = 0.0833, are eliminated, whereas the
midpoint frequencies k/12 + 1/24 are amplified. This means that the
seasonal difference filter on the one hand does what we would like it to
do, namely to eliminate the frequency 1/12, but on the other hand it
generates unwanted side effects by eliminating also multiples of 1/12
and by amplifying midpoint frequencies. This observation gives rise
to the problem, whether one can construct linear filters that have
prescribed properties.
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Least Squares Based Filter Design
A low pass filter aims at eliminating high frequencies, a high pass filter
aims at eliminating small frequencies and a band pass filter allows only
frequencies in a certain band [λ0 −∆, λ0 + ∆] to pass through. They
consequently should have the ideal power transfer functions

glow(λ) =

{
1, λ ∈ [0, λ0]

0, λ ∈ (λ0, 0.5]

ghigh(λ) =

{
0, λ ∈ [0, λ0)

1, λ ∈ [λ0, 0.5]

gband(λ) =

{
1, λ ∈ [λ0 −∆, λ0 + ∆]

0 elsewhere,

where λ0 is the cut off frequency in the first two cases and [λ0 −
∆, λ0 + ∆] is the cut off interval with bandwidth 2∆ > 0 in the final
one. Therefore, the question naturally arises, whether there actually
exist filters, which have a prescribed power transfer function. One
possible approach for fitting a linear filter with weights au to a given
transfer function f is offered by utilizing least squares. Since only
filters of finite length matter in applications, one chooses a transfer
function

fa(λ) =
s∑

u=r

aue
−i2πλu

with fixed integers r, s and fits this function fa to f by minimizing
the integrated squared error∫ 0.5

0
|f(λ)− fa(λ)|2 dλ

in (au)r≤u≤s ∈ Rs−r+1. This is achieved for the choice (Exercise 5.16)

au = 2 Re
(∫ 0.5

0
f(λ)ei2πλu dλ

)
, u = r, . . . , s,

which is formally the real part of the inverse Fourier transform of f .
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Example 5.2.5. For the low pass filter with cut off frequency 0 <
λ0 < 0.5 and ideal transfer function

f(λ) = 1[0,λ0](λ)

we obtain the weights

au = 2

∫ λ0

0
cos(2πλu) dλ =

{
2λ0, u = 0
1
πu sin(2πλ0u), u 6= 0.

Plot 5.2.4: Transfer function of least squares fitted low pass filter with
cut off frequency λ0 = 1/10 and r = −20, s = 20.

1 /* transfer.sas */
2 TITLE1 ’Transfer function’;
3 TITLE2 ’of least squares fitted low pass filter’;
4

5 /* Compute transfer function */
6 DATA data1;
7 DO lambda=0 TO .5 BY .001;
8 f=2*1/10;
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9 DO u=1 TO 20;
10 f=f+2*1/(CONSTANT(’PI’)*u)*SIN(2*CONSTANT(’PI’)*1/10*u)*COS(2*

↪→CONSTANT(’PI’)*lambda*u);
11 END;
12 OUTPUT;
13 END;
14

15 /* Graphical options */
16 AXIS1 LABEL=(’f’ H=1 ’a’ H=2 F=CGREEK ’(l)’);
17 AXIS2 LABEL=(F=CGREEK ’l’);
18 SYMBOL1 V=NONE C=GREEN I=JOIN L=1;
19

20 /* Plot transfer function */
21 PROC GPLOT DATA=data1;
22 PLOT f*lambda / VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
23 RUN; QUIT;

The programs in Section 5.2 (Linear Filters and
Frequencies) are just made for the purpose
of generating graphics, which demonstrate the
shape of power transfer functions or, in case of
Program 5.2.4 (transfer.sas), of a transfer func-
tion. They all consist of two parts, a DATA step
and a PROC step.
In the DATA step values of the power transfer
function are calculated and stored in a variable

g by a DO loop over lambda from 0 to 0.5 with
a small increment. In Program 5.2.4 (trans-
fer.sas) it is necessary to use a second DO loop
within the first one to calculate the sum used in
the definition of the transfer function f.
Two AXIS statements defining the axis labels
and a SYMBOL statement precede the proce-
dure PLOT, which generates the plot of g or f
versus lambda.

The transfer function in Plot 5.2.4, which approximates the ideal
transfer function 1[0,0.1], shows higher oscillations near the cut off point
λ0 = 0.1. This is known as Gibbs’ phenomenon and requires further
smoothing of the fitted transfer function if these oscillations are to be
damped (cf. Bloomfield, 2000, Section 6.4).

5.3 Spectral Density of an ARMA-Process
Theorem 5.2.1 enables us to compute spectral densities of ARMA-
processes.

Theorem 5.3.1. Suppose that

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q, t ∈ Z,

is a stationary ARMA(p, q)-process, where (εt) is a white noise with
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variance σ2. Put

A(z) := 1− a1z − a2z
2 − · · · − apzp,

B(z) := 1 + b1z + b2z
2 + · · ·+ bqz

q

and suppose that the process (Yt) satisfies the stationarity condition
(2.4), i.e., the roots of the equation A(z) = 0 are outside of the unit
circle. The process (Yt) then has the spectral density

fY (λ) = σ2 |B(e−i2πλ)|2

|A(e−i2πλ)|2
= σ2 |1 +

∑q
v=1 bve

−i2πλv|2

|1−
∑p

u=1 aue
−i2πλu|2

. (5.7)

Proof. Since the process (Yt) is supposed to satisfy the stationarity
condition (2.4) it is causal, i.e., Yt =

∑
v≥0 αvεt−v, t ∈ Z, for some

absolutely summable constants αv, v ≥ 0, see Section 2.2. The white
noise process (εt) has by Example 5.1.3 the spectral density fε(λ) = σ2

and, thus, (Yt) has by Theorem 5.2.1 a spectral density fY . The
application of Theorem 5.2.1 to the process

Xt := Yt − a1Yt−1 − · · · − apYt−p = εt + b1εt−1 + · · ·+ bqεt−q

then implies that (Xt) has the spectral density

fX(λ) = |A(e−i2πλ)|2fY (λ) = |B(e−i2πλ)|2fε(λ).

Since the roots of A(z) = 0 are assumed to be outside of the unit
circle, we have |A(e−i2πλ)| 6= 0 and, thus, the assertion of Theorem
5.3.1 follows.

The preceding result with a1 = · · · = ap = 0 implies that an MA(q)-
process has the spectral density

fY (λ) = σ2|B(e−i2πλ)|2.

With b1 = · · · = bq = 0, Theorem 5.3.1 implies that a stationary
AR(p)-process, which satisfies the stationarity condition (2.4), has
the spectral density

fY (λ) = σ2 1

|A(e−i2πλ)|2
.
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Example 5.3.2. The stationary ARMA(1, 1)-process

Yt = aYt−1 + εt + bεt−1

with |a| < 1 has the spectral density

fY (λ) = σ2 1 + 2b cos(2πλ) + b2

1− 2a cos(2πλ) + a2 .

The MA(1)-process, in which case a = 0, has, consequently the spec-
tral density

fY (λ) = σ2(1 + 2b cos(2πλ) + b2),

and the stationary AR(1)-process with |a| < 1, for which b = 0, has
the spectral density

fY (λ) = σ2 1

1− 2a cos(2πλ) + a2 .

The following figures display spectral densities of ARMA(1, 1)-pro-
cesses for various a and b with σ2 = 1.
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Plot 5.3.1: Spectral densities of ARMA(1, 1)-processes Yt = aYt−1 +
εt + bεt−1 with fixed a and various b; σ2 = 1.

1 /* arma11_sd.sas */
2 TITLE1 ’Spectral densities of ARMA(1,1)-processes’;
3

4 /* Compute spectral densities of ARMA(1,1)-processes */
5 DATA data1;
6 a=.5;
7 DO b=-.9, -.2, 0, .2, .5;
8 DO lambda=0 TO .5 BY .005;
9 f=(1+2*b*COS(2*CONSTANT(’PI’)*lambda)+b*b)/(1-2*a*COS(2*CONSTANT

↪→(’PI’)*lambda)+a*a);
10 OUTPUT;
11 END;
12 END;
13

14 /* Graphical options */
15 AXIS1 LABEL=(’f’ H=1 ’Y’ H=2 F=CGREEK ’(l)’);
16 AXIS2 LABEL=(F=CGREEK ’l’);
17 SYMBOL1 V=NONE C=GREEN I=JOIN L=4;
18 SYMBOL2 V=NONE C=GREEN I=JOIN L=3;
19 SYMBOL3 V=NONE C=GREEN I=JOIN L=2;
20 SYMBOL4 V=NONE C=GREEN I=JOIN L=33;
21 SYMBOL5 V=NONE C=GREEN I=JOIN L=1;
22 LEGEND1 LABEL=(’a=0.5, b=’);
23

24 /* Plot spectral densities of ARMA(1,1)-processes */
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25 PROC GPLOT DATA=data1;
26 PLOT f*lambda=b / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;
27 RUN; QUIT;

Like in section 5.2 (Linear Filters and Frequen-
cies) the programs here just generate graphics.
In the DATA step some loops over the varying
parameter and over lambda are used to calcu-
late the values of the spectral densities of the

corresponding processes. Here SYMBOL state-
ments are necessary and a LABEL statement
to distinguish the different curves generated by
PROC GPLOT.

Plot 5.3.2: Spectral densities of ARMA(1, 1)-processes with parameter
b fixed and various a. Corresponding file: arma11 sd2.sas.
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Plot 5.3.2b: Spectral densities of MA(1)-processes Yt = εt + bεt−1 for
various b. Corresponding file: ma1 sd.sas.
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Plot 5.3.2c: Spectral densities of AR(1)-processes Yt = aYt−1 + εt for
various a. Corresponding file: ar1 sd.sas.

Exercises
5.1. Formulate and prove Theorem 5.1.1 for Hermitian functions K
and complex-valued stationary processes. Hint for the sufficiency part:
Let K1 be the real part and K2 be the imaginary part of K. Consider
the real-valued 2n× 2n-matrices

M (n) =
1

2

(
K

(n)
1 K

(n)
2

−K(n)
2 K

(n)
1

)
, K

(n)
l =

(
Kl(r − s)

)
1≤r,s≤n, l = 1, 2.

Then M (n) is a positive semidefinite matrix (check that zTKz̄ =
(x, y)TM (n)(x, y), z = x + iy, x, y ∈ Rn). Proceed as in the proof
of Theorem 5.1.1: Let (V1, . . . , Vn,W1, . . . ,Wn) be a 2n-dimensional
normal distributed random vector with mean vector zero and covari-
ance matrix M (n) and define for n ∈ N the family of finite dimensional
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distributions

Ft+1,...,t+n(v1, w1, . . . , vn, wn)

:= P{V1 ≤ v1,W1 ≤ w1, . . . , Vn ≤ vn,Wn ≤ wn},

t ∈ Z. By Kolmogorov’s theorem there exists a bivariate Gaussian
process (Vt,Wt)t∈Z with mean vector zero and covariances

E(Vt+hVt) = E(Wt+hWt) =
1

2
K1(h)

E(Vt+hWt) = −E(Wt+hVt) =
1

2
K2(h).

Conclude by showing that the complex-valued process Yt := Vt− iWt,
t ∈ Z, has the autocovariance function K.

5.2. Suppose that A is a real positive semidefinite n× n-matrix i.e.,
xTAx ≥ 0 for x ∈ Rn. Show that A is also positive semidefinite for
complex numbers i.e., zTAz̄ ≥ 0 for z ∈ Cn.

5.3. Use (5.3) to show that for 0 < a < 0.5

γ(h) =

{
sin(2πah)

2πh , h ∈ Z \ {0}
a, h = 0

is the autocovariance function of a stationary process. Compute its
spectral density.

5.4. Compute the autocovariance function of a stationary process with
spectral density

f(λ) =
0.5− |λ− 0.5|

0.52 , 0 ≤ λ ≤ 1.

5.5. Suppose that F and G are measure generating functions defined
on some interval [a, b] with F (a) = G(a) = 0 and∫

[a,b]

ψ(x)F (dx) =

∫
[a,b]

ψ(x)G(dx)

for every continuous function ψ : [a, b] → R. Show that F=G. Hint:
Approximate the indicator function 1[a,t](x), x ∈ [a, b], by continuous
functions.
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5.6. Generate a white noise process and plot its periodogram.

5.7. A real valued stationary process (Yt)t∈Z is supposed to have the
spectral density f(λ) = a+bλ, λ ∈ [0, 0.5]. Which conditions must be
satisfied by a and b? Compute the autocovariance function of (Yt)t∈Z.

5.8. (Césaro convergence) Show that limN→∞
∑N

t=1 at = S implies

limN→∞
∑N−1

t=1 (1− t/N)at = S.

Hint:
∑N−1

t=1 (1− t/N)at = (1/N)
∑N−1

s=1
∑s

t=1 at.

5.9. Suppose that (Yt)t∈Z and (Zt)t∈Z are stationary processes such
that Yr and Zs are uncorrelated for arbitrary r, s ∈ Z. Denote by FY
and FZ the pertaining spectral distribution functions and put Xt :=
Yt + Zt, t ∈ Z. Show that the process (Xt) is also stationary and
compute its spectral distribution function.

5.10. Let (Yt) be a real valued stationary process with spectral dis-
tribution function F . Show that for any function g : [−0.5, 0.5] → C
with

∫ 1
0 |g(λ− 0.5)|2 dF (λ) <∞

1∫
0

g(λ− 0.5) dF (λ) =

∫ 1

0
g(0.5− λ) dF (λ).

In particular we have

F (0.5 + λ)− F (0.5−) = F (0.5)− F ((0.5− λ)−).

Hint: Verify the equality first for g(x) = exp(i2πhx), h ∈ Z, and then
use the fact that, on compact sets, the trigonometric polynomials
are uniformly dense in the space of continuous functions, which in
turn form a dense subset in the space of square integrable functions.
Finally, consider the function g(x) = 1[0,ξ](x), 0 ≤ ξ ≤ 0.5 (cf. the
hint in Exercise 5.5).

5.11. Let (Xt) and (Yt) be stationary processes with mean zero and
absolute summable covariance functions. If their spectral densities fX
and fY satisfy fX(λ) ≤ fY (λ) for 0 ≤ λ ≤ 1, show that
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(i) Γn,Y−Γn,X is a positive semidefinite matrix, where Γn,X and Γn,Y
are the covariance matrices of (X1, . . . , Xn)

T and (Y1, . . . , Yn)
T

respectively, and

(ii) Var(aT (X1, . . . , Xn)) ≤ Var(aT (Y1, . . . , Yn)) for all vectors a =
(a1, . . . , an)

T ∈ Rn.

5.12. Compute the gain function of the filter

au =


1/4, u ∈ {−1, 1}
1/2, u = 0

0 elsewhere.

5.13. The simple moving average

au =

{
1/(2q + 1), u ≤ |q|
0 elsewhere

has the gain function

ga(λ) =

1, λ = 0(
sin((2q+1)πλ)
(2q+1) sin(πλ)

)2
, λ ∈ (0, 0.5].

Is this filter for large q a low pass filter? Plot its power transfer
functions for q = 5/10/20. Hint: Exercise 4.2.

5.14. Compute the gain function of the exponential smoothing filter

au =

{
α(1− α)u, u ≥ 0

0, u < 0,

where 0 < α < 1. Plot this function for various α. What is the effect
of α→ 0 or α→ 1?

5.15. Let (Xt)t∈Z be a stationary process, let (au)u∈Z be an absolutely
summable filter and put Yt :=

∑
u∈Z auXt−u, t ∈ Z. If (bw)w∈Z is an-

other absolutely summable filter, then the process Zt =
∑

w∈Z bwYt−w
has the spectral distribution function

FZ(λ) =

λ∫
0

|Fa(µ)|2|Fb(µ)|2 dFX(µ)
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(cf. Exercise 4.11 (iii)).

5.16. Show that the function

D(ar, . . . , as) =

0.5∫
0

|f(λ)− fa(λ)|2 dλ

with fa(λ) =
∑s

u=r aue
−i2πλu, au ∈ R, is minimized for

au := 2 Re
(∫ 0.5

0
f(λ)ei2πλu dλ

)
, u = r, . . . , s.

Hint: Put f(λ) = f1(λ) + if2(λ) and differentiate with respect to au.

5.17. Compute in analogy to Example 5.2.5 the transfer functions of
the least squares high pass and band pass filter. Plot these functions.
Is Gibbs’ phenomenon observable?

5.18. An AR(2)-process

Yt = a1Yt−1 + a2Yt−2 + εt

satisfying the stationarity condition (2.4) (cf. Exercise 2.25) has the
spectral density

fY (λ) =
σ2

1 + a2
1 + a2

2 + 2(a1a2 − a1) cos(2πλ)− 2a2 cos(4πλ)
.

Plot this function for various choices of a1, a2.

5.19. Show that (5.2) is a necessary condition for K to be the auto-
covariance function of a stationary process.
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Chapter

6Statistical Analysis in
the Frequency Domain

We will deal in this chapter with the problem of testing for a white
noise and the estimation of the spectral density. The empirical coun-
terpart of the spectral density, the periodogram, will be basic for both
problems, though it will turn out that it is not a consistent estimate.
Consistency requires extra smoothing of the periodogram via a linear
filter.

6.1 Testing for a White Noise
Our initial step in a statistical analysis of a time series in the frequency
domain is to test, whether the data are generated by a white noise
(εt)t∈Z. We start with the model

Yt = µ+ A cos(2πλt) +B sin(2πλt) + εt,

where we assume that the εt are independent and normal distributed
with mean zero and variance σ2. We will test the nullhypothesis

A = B = 0

against the alternative

A 6= 0 or B 6= 0,

where the frequency λ, the variance σ2 > 0 and the intercept µ ∈ R
are unknown. Since the periodogram is used for the detection of highly
intensive frequencies inherent in the data, it seems plausible to apply
it to the preceding testing problem as well. Note that (Yt)t∈Z is a
stationary process only under the nullhypothesis A = B = 0.
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The Distribution of the Periodogram
In the following we will derive the tests by Fisher and Bartlett–
Kolmogorov–Smirnov for the above testing problem. In a preparatory
step we compute the distribution of the periodogram.

Lemma 6.1.1. Let ε1, . . . , εn be independent and identically normal
distributed random variables with mean µ ∈ R and variance σ2 > 0.
Denote by ε̄ := 1

n

∑n
t=1 εt the sample mean of ε1, . . . , εn and by

Cε

(
k

n

)
=

1

n

n∑
t=1

(εt − ε̄) cos

(
2π
k

n
t

)
,

Sε

(
k

n

)
=

1

n

n∑
t=1

(εt − ε̄) sin

(
2π
k

n
t

)
the cross covariances with Fourier frequencies k/n, 1 ≤ k ≤ [(n −
1)/2], cf. (4.1). Then the 2[(n− 1)/2] random variables

Cε(k/n), Sε(k/n), 1 ≤ k ≤ [(n− 1)/2],

are independent and identically N(0, σ2/(2n))-distributed.

Proof. Note that with m := [(n− 1)/2] we have

v :=
(
Cε(1/n), Sε(1/n), . . . , Cε(m/n), Sε(m/n)

)T
= A(εt − ε̄)1≤t≤n

= A(In − n−1En)(εt)1≤t≤n,

where the 2m× n-matrix A is given by

A :=
1

n



cos
(

2π 1
n

)
cos
(

2π 1
n2
)

. . . cos
(

2π 1
nn
)

sin
(

2π 1
n

)
sin
(

2π 1
n2
)

. . . sin
(

2π 1
nn
)

...
...

cos
(

2πmn

)
cos
(

2πmn 2
)

. . . cos
(

2πmn n
)

sin
(

2πmn

)
sin
(

2πmn 2
)

. . . sin
(

2πmn n
)


.
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In is the n × n-unity matrix and En is the n × n-matrix with each
entry being 1. The vector v is, therefore, normal distributed with
mean vector zero and covariance matrix

σ2A(In − n−1En)(In − n−1En)
TAT

= σ2A(In − n−1En)A
T

= σ2AAT

=
σ2

2n
I2m,

which is a consequence of (4.5) and the orthogonality properties from
Lemma 4.1.2; see e.g. Falk et al. (2002, Definition 2.1.2).

Corollary 6.1.2. Let ε1, . . . , εn be as in the preceding lemma and let

Iε(k/n) = n
{
C2
ε (k/n) + S2

ε (k/n)
}

be the pertaining periodogram, evaluated at the Fourier frequencies
k/n, 1 ≤ k ≤ [(n − 1)/2], k ∈ N. The random variables Iε(k/n)/σ2

are independent and identically standard exponential distributed i.e.,

P{Iε(k/n)/σ2 ≤ x} =

{
1− exp(−x), x > 0

0, x ≤ 0.

Proof. Lemma 6.1.1 implies that√
2n

σ2Cε(k/n),

√
2n

σ2Sε(k/n)

are independent standard normal random variables and, thus,

2Iε(k/n)

σ2 =

(√
2n

σ2Cε(k/n)

)2

+

(√
2n

σ2Sε(k/n)

)2

is χ2-distributed with two degrees of freedom. Since this distribution
has the distribution function 1 − exp(−x/2), x ≥ 0, the assertion
follows; see e.g. Falk et al. (2002, Theorem 2.1.7).
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Denote by U1:m ≤ U2:m ≤ · · · ≤ Um:m the ordered values pertaining
to independent and uniformly on (0, 1) distributed random variables
U1, . . . , Um. It is a well known result in the theory of order statistics
that the distribution of the vector (Uj:m)1≤j≤m coincides with that
of ((Z1 + · · · + Zj)/(Z1 + · · · + Zm+1))1≤j≤m, where Z1, . . . , Zm+1 are
independent and identically exponential distributed random variables;
see, for example, Reiss (1989, Theorem 1.6.7). The following result,
which will be basic for our further considerations, is, therefore, an
immediate consequence of Corollary 6.1.2; see also Exercise 6.3. By
=D we denote equality in distribution.

Theorem 6.1.3. Let ε1, . . . , εn be independent N(µ, σ2)-distributed
random variables and denote by

Sj :=

∑j
k=1 Iε(k/n)∑m
k=1 Iε(k/n)

, j = 1, . . . ,m := [(n− 1)/2],

the cumulated periodogram. Note that Sm = 1. Then we have(
S1, . . . , Sm−1

)
=D

(
U1:m−1, . . . , Um−1:m−1).

The vector (S1, . . . , Sm−1) has, therefore, the Lebesgue-density

f(s1, . . . , sm−1) =

{
(m− 1)!, if 0 < s1 < · · · < sm−1 < 1

0 elsewhere.

The following consequence of the preceding result is obvious.

Corollary 6.1.4. The empirical distribution function of S1, . . . , Sm−1
is distributed like that of U1, . . . , Um−1, i.e.,

F̂m−1(x) :=
1

m− 1

m−1∑
j=1

1(0,x](Sj) =D
1

m− 1

m−1∑
j=1

1(0,x](Uj), x ∈ [0, 1].

Corollary 6.1.5. Put S0 := 0 and

Mm := max
1≤j≤m

(Sj − Sj−1) =
max1≤j≤m Iε(j/n)∑m

k=1 Iε(k/n)
.
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The maximum spacing Mm has the distribution function

Gm(x) := P{Mm ≤ x} =
m∑
j=0

(−1)j
(
m

j

)
(max{0, 1−jx})m−1, x > 0.

Proof. Put
Vj := Sj − Sj−1, j = 1, . . . ,m.

By Theorem 6.1.3 the vector (V1, . . . , Vm) is distributed like the length
of the m consecutive intervals into which [0, 1] is partitioned by the
m− 1 random points U1, . . . , Um−1:

(V1, . . . , Vm) =D (U1:m−1, U2:m−1 − U1:m−1, . . . , 1− Um−1:m−1).

The probability that Mm is less than or equal to x equals the prob-
ability that all spacings Vj are less than or equal to x, and this is
provided by the covering theorem as stated in Feller (1971, Theorem
3 in Section I.9).

Fisher’s Test
The preceding results suggest to test the hypothesis Yt = εt with εt
independent and N(µ, σ2)-distributed, by testing for the uniform dis-
tribution on [0, 1]. Precisely, we will reject this hypothesis if Fisher’s
κ-statistic

κm :=
max1≤j≤m I(j/n)

(1/m)
∑m

k=1 I(k/n)
= mMm

is significantly large, i.e., if one of the values I(j/n) is significantly
larger than the average over all. The hypothesis is, therefore, rejected
at error level α if

κm > cα with 1−Gm

(cα
m

)
= α.

This is Fisher’s test for hidden periodicities. Common values are
α = 0.01 and = 0.05. Table 6.1.1, taken from Fuller (1995), lists
several critical values cα.
Note that these quantiles can be approximated by the corresponding
quantiles of a Gumbel distribution if m is large (Exercise 6.12).
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m c0.05 c0.01 m c0.05 c0.01

10 4.450 5.358 150 7.832 9.372
15 5.019 6.103 200 8.147 9.707
20 5.408 6.594 250 8.389 9.960
25 5.701 6.955 300 8.584 10.164
30 5.935 7.237 350 8.748 10.334
40 6.295 7.663 400 8.889 10.480
50 6.567 7.977 500 9.123 10.721
60 6.785 8.225 600 9.313 10.916
70 6.967 8.428 700 9.473 11.079
80 7.122 8.601 800 9.612 11.220
90 7.258 8.750 900 9.733 11.344

100 7.378 8.882 1000 9.842 11.454

Table 6.1.1: Critical values cα of Fisher’s test for hidden periodicities.

The Bartlett–Kolmogorov–Smirnov Test
Denote again by Sj the cumulated periodogram as in Theorem 6.1.3.
If actually Yt = εt with εt independent and identically N(µ, σ2)-
distributed, then we know from Corollary 6.1.4 that the empirical
distribution function F̂m−1 of S1, . . . , Sm−1 behaves stochastically ex-
actly like that of m−1 independent and uniformly on (0, 1) distributed
random variables. Therefore, with the Kolmogorov–Smirnov statistic

∆m−1 := sup
x∈[0,1]

|F̂m−1(x)− x|

we can measure the maximum difference between the empirical dis-
tribution function and the theoretical one F (x) = x, x ∈ [0, 1].
The following rule is quite common. For m > 30, the hypothesis
Yt = εt with εt being independent and N(µ, σ2)-distributed is re-
jected if ∆m−1 > cα/

√
m− 1, where c0.05 = 1.36 and c0.01 = 1.63 are

the critical values for the levels α = 0.05 and α = 0.01.
This Bartlett-Kolmogorov-Smirnov test can also be carried out visu-
ally by plotting for x ∈ [0, 1] the sample distribution function F̂m−1(x)
and the band

y = x± cα√
m− 1

.
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The hypothesis Yt = εt is rejected if F̂m−1(x) is for some x ∈ [0, 1]
outside of this confidence band.

Example 6.1.6. (Airline Data). We want to test, whether the vari-
ance stabilized, trend eliminated and seasonally adjusted Airline Data
from Example 1.3.1 were generated from a white noise (εt)t∈Z, where
εt are independent and identically normal distributed. The Fisher
test statistic has the value κm = 6.573 and does, therefore, not reject
the hypothesis at the levels α = 0.05 and α = 0.01, where m = 65.
The Bartlett–Kolmogorov–Smirnov test, however, rejects this hypoth-
esis at both levels, since ∆64 = 0.2319 > 1.36/

√
64 = 0.17 and also

∆64 > 1.63/
√

64 = 0.20375.

SPECTRA Procedure

----- Test for White Noise for variable DLOGNUM -----

Fisher’s Kappa: M*MAX(P(*))/SUM(P(*))
Parameters: M = 65

MAX(P(*)) = 0.028
SUM(P(*)) = 0.275

Test Statistic: Kappa = 6.5730

Bartlett’s Kolmogorov-Smirnov Statistic:
Maximum absolute difference of the standardized
partial sums of the periodogram and the CDF of a
uniform(0,1) random variable.

Test Statistic = 0.2319

Listing 6.1.1: Fisher’s κ and the Bartlett-Kolmogorov-Smirnov test
with m = 65 for testing a white noise generation of the adjusted
Airline Data.

1 /* airline_whitenoise.sas */
2 TITLE1 ’Tests for white noise’;
3 TITLE2 ’for the trend und seasonal’;
4 TITLE3 ’adjusted Airline Data’;
5

6 /* Read in the data and compute log-transformation as well as seasonal
↪→ and trend adjusted data */

7 DATA data1;
8 INFILE ’c:\data\airline.txt’;
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9 INPUT num @@;
10 dlognum=DIF12(DIF(LOG(num)));
11

12 /* Compute periodogram and test for white noise */
13 PROC SPECTRA DATA=data1 P WHITETEST OUT=data2;
14 VAR dlognum;
15 RUN; QUIT;

In the DATA step the raw data of the airline pas-
sengers are read into the variable num. A log-
transformation, building the fist order difference
for trend elimination and the 12th order differ-
ence for elimination of a seasonal component
lead to the variable dlognum, which is sup-
posed to be generated by a stationary process.
Then PROC SPECTRA is applied to this vari-
able, whereby the options P and OUT=data2
generate a data set containing the periodogram

data. The option WHITETEST causes SAS
to carry out the two tests for a white noise,
Fisher’s test and the Bartlett-Kolmogorov-
Smirnov test. SAS only provides the values
of the test statistics but no decision. One has
to compare these values with the critical val-
ues from Table 6.1.1 (Critical values for Fisher’s
Test in the script) and the approximative ones
cα/
√
m− 1.

The following figure visualizes the rejection at both levels by the
Bartlett-Kolmogorov-Smirnov test.
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Plot 6.1.2: Bartlett-Kolmogorov-Smirnov test with m = 65 testing
for a white noise generation of the adjusted Airline Data. Solid
line/broken line = confidence bands for F̂m−1(x), x ∈ [0, 1], at lev-
els α = 0.05/0.01.

1 /* airline_whitenoise_plot.sas */
2 TITLE1 ’Visualisation of the test for white noise’;
3 TITLE2 ’for the trend und seasonal adjusted’;
4 TITLE3 ’Airline Data’;
5 /* Note that this program needs data2 generated by the previous

↪→program (airline_whitenoise.sas) */
6

7 /* Calculate the sum of the periodogram */
8 PROC MEANS DATA=data2(FIRSTOBS=2) NOPRINT;
9 VAR P_01;

10 OUTPUT OUT=data3 SUM=psum;
11

12 /* Compute empirical distribution function of cumulated periodogram
↪→and its confidence bands */

13 DATA data4;
14 SET data2(FIRSTOBS=2);
15 IF _N_=1 THEN SET data3;
16 RETAIN s 0;
17 s=s+P_01/psum;
18 fm=_N_/(_FREQ_-1);
19 yu_01=fm+1.63/SQRT(_FREQ_-1);
20 yl_01=fm-1.63/SQRT(_FREQ_-1);
21 yu_05=fm+1.36/SQRT(_FREQ_-1);
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22 yl_05=fm-1.36/SQRT(_FREQ_-1);
23

24 /* Graphical options */
25 SYMBOL1 V=NONE I=STEPJ C=GREEN;
26 SYMBOL2 V=NONE I=JOIN C=RED L=2;
27 SYMBOL3 V=NONE I=JOIN C=RED L=1;
28 AXIS1 LABEL=(’x’) ORDER=(.0 TO 1.0 BY .1);
29 AXIS2 LABEL=NONE;
30

31 /* Plot empirical distribution function of cumulated periodogram with
↪→its confidence bands */

32 PROC GPLOT DATA=data4;
33 PLOT fm*s=1 yu_01*fm=2 yl_01*fm=2 yu_05*fm=3 yl_05*fm=3 / OVERLAY

↪→HAXIS=AXIS1 VAXIS=AXIS2;
34 RUN; QUIT;

This program uses the data set data2 cre-
ated by Program 6.1.1 (airline whitenoise.sas),
where the first observation belonging to the fre-
quency 0 is dropped. PROC MEANS calculates
the sum (keyword SUM) of the SAS periodogram
variable P 0 and stores it in the variable psum
of the data set data3. The NOPRINT option
suppresses the printing of the output.
The next DATA step combines every observa-
tion of data2 with this sum by means of the
IF statement. Furthermore a variable s is ini-
tialized with the value 0 by the RETAIN state-
ment and then the portion of each periodogram
value from the sum is cumulated. The variable

fm contains the values of the empirical distribu-
tion function calculated by means of the auto-
matically generated variable N containing the
number of observation and the variable FREQ ,
which was created by PROC MEANS and con-
tains the number m. The values of the upper
and lower band are stored in the y variables.
The last part of this program contains SYMBOL
and AXIS statements and PROC GPLOT to vi-
sualize the Bartlett-Kolmogorov-Smirnov statis-
tic. The empirical distribution of the cumulated
periodogram is represented as a step function
due to the I=STEPJ option in the SYMBOL1
statement.

6.2 Estimating Spectral Densities
We suppose in the following that (Yt)t∈Z is a stationary real valued pro-
cess with mean µ and absolutely summable autocovariance function
γ. According to Corollary 5.1.5, the process (Yt) has the continuous
spectral density

f(λ) =
∑
h∈Z

γ(h)e−i2πλh.

In the preceding section we computed the distribution of the empirical
counterpart of a spectral density, the periodogram, in the particular
case, when (Yt) is a Gaussian white noise. In this section we will inves-
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tigate the limit behavior of the periodogram for arbitrary independent
random variables (Yt).

Asymptotic Properties of the Periodogram
In order to establish asymptotic properties of the periodogram, its
following modification is quite useful. For Fourier frequencies k/n,
0 ≤ k ≤ [n/2] we put

In(k/n) =
1

n

∣∣∣ n∑
t=1

Yte
−i2π(k/n)t

∣∣∣2
=

1

n

{( n∑
t=1

Yt cos
(

2π
k

n
t
))2

+
( n∑

t=1

Yt sin
(

2π
k

n
t
))2
}
.

(6.1)

Up to k = 0, this coincides by (4.5) with the definition of the peri-
odogram as given in (4.6) on page 143. From Theorem 4.2.3 we obtain
the representation

In(k/n) =

{
nȲ 2

n , k = 0∑
|h|<n c(h)e−i2π(k/n)h, k = 1, . . . , [n/2]

(6.2)

with Ȳn := 1
n

∑n
t=1 Yt and the sample autocovariance function

c(h) =
1

n

n−|h|∑
t=1

(
Yt − Ȳn

)(
Yt+|h| − Ȳn

)
.

By representation (6.1), the proof of Theorem 4.2.3 and the equations
(4.5), the value In(k/n) does not change for k 6= 0 if we replace the
sample mean Ȳn in c(h) by the theoretical mean µ. This leads to the
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equivalent representation of the periodogram for k 6= 0

In(k/n) =
∑
|h|<n

1

n

( n−|h|∑
t=1

(Yt − µ)(Yt+|h| − µ)
)
e−i2π(k/n)h

=
1

n

n∑
t=1

(Yt − µ)2+ (6.3)

2
n−1∑
h=1

1

n

( n−|h|∑
t=1

(Yt − µ)(Yt+|h| − µ)
)

cos
(

2π
k

n
h
)
.

We define now the periodogram for λ ∈ [0, 0.5] as a piecewise constant
function

In(λ) = In(k/n) if
k

n
− 1

2n
< λ ≤ k

n
+

1

2n
. (6.4)

The following result shows that the periodogram In(λ) is for λ 6= 0 an
asymptotically unbiased estimator of the spectral density f(λ).

Theorem 6.2.1. Let (Yt)t∈Z be a stationary process with absolutely
summable autocovariance function γ. Then we have with µ = E(Yt)

E(In(0))− nµ2 n→∞−→ f(0),

E(In(λ))
n→∞−→ f(λ), λ 6= 0.

If µ = 0, then the convergence E(In(λ))
n→∞−→ f(λ) holds uniformly on

[0, 0.5].

Proof. By representation (6.2) and the Césaro convergence result (Ex-
ercise 5.8) we have

E(In(0))− nµ2 =
1

n

( n∑
t=1

n∑
s=1

E(YtYs)

)
− nµ2

=
1

n

n∑
t=1

n∑
s=1

Cov(Yt, Ys)

=
∑
|h|<n

(
1− |h|

n

)
γ(h)

n→∞−→
∑
h∈Z

γ(h) = f(0).
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Define now for λ ∈ [0, 0.5] the auxiliary function

gn(λ) :=
k

n
, if

k

n
− 1

2n
< λ ≤ k

n
+

1

2n
, k ∈ Z. (6.5)

Then we obviously have

In(λ) = In(gn(λ)). (6.6)

Choose now λ ∈ (0, 0.5]. Since gn(λ) −→ λ as n→∞, it follows that
gn(λ) > 0 for n large enough. By (6.3) and (6.6) we obtain for such n

E(In(λ)) =
∑
|h|<n

1

n

n−|h|∑
t=1

E
(

(Yt − µ)(Yt+|h| − µ)
)
e−i2πgn(λ)h

=
∑
|h|<n

(
1− |h|

n

)
γ(h)e−i2πgn(λ)h.

Since
∑

h∈Z |γ(h)| <∞, the series
∑
|h|<n γ(h) exp(−i2πλh) converges

to f(λ) uniformly for 0 ≤ λ ≤ 0.5. Kronecker’s Lemma (Exercise 6.8)
implies moreover∣∣∣ ∑

|h|<n

|h|
n
γ(h)e−i2πλh

∣∣∣ ≤∑
|h|<n

|h|
n
|γ(h)| n→∞−→ 0,

and, thus, the series

fn(λ) :=
∑
|h|<n

(
1− |h|

n

)
γ(h)e−i2πλh

converges to f(λ) uniformly in λ as well. From gn(λ)
n→∞−→ λ and the

continuity of f we obtain for λ ∈ (0, 0.5]

|E(In(λ))− f(λ)| = |fn(gn(λ))− f(λ)|
≤ |fn(gn(λ))− f(gn(λ))|+ |f(gn(λ))− f(λ)|
n→∞−→ 0.

Note that |gn(λ) − λ| ≤ 1/(2n). The uniform convergence in case of
µ = 0 then follows from the uniform convergence of gn(λ) to λ and
the uniform continuity of f on the compact interval [0, 0.5].
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In the following result we compute the asymptotic distribution of
the periodogram for independent and identically distributed random
variables with zero mean, which are not necessarily Gaussian ones.
The Gaussian case was already established in Corollary 6.1.2.

Theorem 6.2.2. Let Z1, . . . , Zn be independent and identically dis-
tributed random variables with mean E(Zt) = 0 and variance E(Z2

t ) =
σ2 < ∞. Denote by In(λ) the pertaining periodogram as defined in
(6.6).

(i) The random vector (In(λ1), . . . , In(λr)) with 0 < λ1 < · · · <
λr < 0.5 converges in distribution for n→∞ to the distribution
of r independent and identically exponential distributed random
variables with mean σ2.

(ii) If E(Z4
t ) = ησ4 <∞, then we have for k = 0, . . . , [n/2], k ∈ N

Var(In(k/n)) =

{
2σ4 + n−1(η − 3)σ4, k = 0 or k = n/2

σ4 + n−1(η − 3)σ4 elsewhere

(6.7)

and
Cov(In(j/n), In(k/n)) = n−1(η − 3)σ4, j 6= k. (6.8)

For N(0, σ2)-distributed random variables Zt we have η = 3 (Exer-
cise 6.9) and, thus, In(k/n) and In(j/n) are for j 6= k uncorrelated.
Actually, we established in Corollary 6.1.2 that they are independent
in this case.

Proof. Put for λ ∈ (0, 0.5)

An(λ) := An(gn(λ)) :=
√

2/n
n∑
t=1

Zt cos(2πgn(λ)t),

Bn(λ) := Bn(gn(λ)) :=
√

2/n
n∑
t=1

Zt sin(2πgn(λ)t),

with gn defined in (6.5). Since

In(λ) =
1

2

{
A2
n(λ) +B2

n(λ)
}
,
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it suffices, by repeating the arguments in the proof of Corollary 6.1.2,
to show that(

An(λ1), Bn(λ1), . . . , An(λr), Bn(λr)
)
−→D N(0, σ2I2r),

where I2r denotes the 2r × 2r-unity matrix and −→D convergence in
distribution. Since gn(λ)

n→∞−→ λ, we have gn(λ) > 0 for λ ∈ (0, 0.5) if
n is large enough. The independence of Zt together with the definition
of gn and the orthogonality equations in Lemma 4.1.2 imply

Var(An(λ)) = Var(An(gn(λ)))

= σ2 2

n

n∑
t=1

cos2(2πgn(λ)t) = σ2.

For ε > 0 we have

1

n

n∑
t=1

E
(
Z2
t cos2(2πgn(λ)t)1{|Zt cos(2πgn(λ)t)|>ε

√
nσ2}

)
≤ 1

n

n∑
t=1

E
(
Z2
t 1{|Zt|>ε

√
nσ2}

)
= E

(
Z2

11{|Z1|>ε
√
nσ2}

)
n→∞−→ 0

i.e., the triangular array (2/n)1/2Zt cos(2πgn(λ)t), 1 ≤ t ≤ n, n ∈ N,
satisfies the Lindeberg condition implying An(λ) −→D N(0, σ2); see,
for example, Billingsley (1968, Theorem 7.2).
Similarly one shows that Bn(λ) −→D N(0, σ2) as well. Since the
random vector (An(λ1), Bn(λ1), . . . , An(λr), Bn(λr)) has by (3.2) the
covariance matrix σ2I2r, its asymptotic joint normality follows easily
by applying the Cramér-Wold device, cf. Billingsley (1968, Theorem
7.7), and proceeding as before. This proves part (i) of Theorem 6.2.2.
From the definition of the periodogram in (6.1) we conclude as in the
proof of Theorem 4.2.3

In(k/n) =
1

n

n∑
s=1

n∑
t=1

ZsZte
−i2π kn (s−t)
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and, thus, we obtain

E(In(j/n)In(k/n))

=
1

n2

n∑
s=1

n∑
t=1

n∑
u=1

n∑
v=1

E(ZsZtZuZv)e
−i2π jn (s−t)e−i2π

k
n (u−v).

We have

E(ZsZtZuZv) =


ησ4, s = t = u = v

σ4, s = t 6= u = v, s = u 6= t = v, s = v 6= t = u

0 elsewhere

and

e−i2π
j
n (s−t)e−i2π

k
n (u−v) =


1, s = t, u = v

e−i2π((j+k)/n)sei2π((j+k)/n)t, s = u, t = v

e−i2π((j−k)/n)sei2π((j−k)/n)t, s = v, t = u.

This implies

E(In(j/n)In(k/n))

=
ησ4

n
+
σ4

n2

{
n(n− 1) +

∣∣∣ n∑
t=1

e−i2π((j+k)/n)t
∣∣∣2+

∣∣∣ n∑
t=1

e−i2π((j−k)/n)t
∣∣∣2 − 2n

}
=

(η − 3)σ4

n
+ σ4

{
1 +

1

n2

∣∣∣ n∑
t=1

ei2π((j+k)/n)t
∣∣∣2+

1

n2

∣∣∣ n∑
t=1

ei2π((j−k)/n)t
∣∣∣2}.

From E(In(k/n)) = n−1∑n
t=1 E(Z2

t ) = σ2 we finally obtain

Cov(In(j/n), In(k/n))

=
(η − 3)σ4

n
+
σ4

n2

{∣∣∣ n∑
t=1

ei2π((j+k)/n)t
∣∣∣2 +

∣∣∣ n∑
t=1

ei2π((j−k)/n)t
∣∣∣2},

from which (6.7) and (6.8) follow by using (4.5) on page 142.
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Remark 6.2.3. Theorem 6.2.2 can be generalized to filtered processes
Yt =

∑
u∈Z auZt−u, with (Zt)t∈Z as in Theorem 6.2.2. In this case one

has to replace σ2, which equals by Example 5.1.3 the constant spectral
density fZ(λ), in (i) by the spectral density fY (λi), 1 ≤ i ≤ r. If in
addition

∑
u∈Z |au||u|1/2 <∞, then we have in (ii) the expansions

Var(In(k/n)) =

{
2f 2

Y (k/n) +O(n−1/2), k = 0 or k = n/2

f 2
Y (k/n) +O(n−1/2) elsewhere,

and
Cov(In(j/n), In(k/n)) = O(n−1), j 6= k,

where In is the periodogram pertaining to Y1, . . . , Yn. The above terms
O(n−1/2) and O(n−1) are uniformly bounded in k and j by a constant
C.
We omit the highly technical proof and refer to Brockwell and Davis
(1991, Section 10.3).
Recall that the class of processes Yt =

∑
u∈Z auZt−u is a fairly rich

one, which contains in particular ARMA-processes, see Section 2.2
and Remark 2.1.12.

Discrete Spectral Average Estimator
The preceding results show that the periodogram is not a consistent
estimator of the spectral density. The law of large numbers together
with the above remark motivates, however, that consistency can be
achieved for a smoothed version of the periodogram such as a simple
moving average ∑

|j|≤m

1

2m+ 1
In

(
k + j

n

)
,

which puts equal weights 1/(2m + 1) on adjacent values. Dropping
the condition of equal weights, we define a general linear smoother by
the linear filter

f̂n

(k
n

)
:=
∑
|j|≤m

ajnIn

(k + j

n

)
. (6.9)
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The sequence m = m(n), defining the adjacent points of k/n, has to
satisfy

m
n→∞−→ ∞ and m/n

n→∞−→ 0, (6.10)

and the weights ajn have the properties

(i) ajn ≥ 0,

(ii) ajn = a−jn,

(iii)
∑
|j|≤m ajn = 1,

(iv)
∑
|j|≤m a

2
jn

n→∞−→ 0.
(6.11)

For the simple moving average we have, for example

ajn =

{
1/(2m+ 1), |j| ≤ m

0 elsewhere

and
∑
|j|≤m a

2
jn = 1/(2m + 1)

n→∞−→ 0. For λ ∈ [0, 0.5] we put In(0.5 +

λ) := In(0.5 − λ), which defines the periodogram also on [0.5, 1].
If (k + j)/n is outside of the interval [0, 1], then In((k + j)/n) is
understood as the periodic extension of In with period 1. This also
applies to the spectral density f . The estimator

f̂n(λ) := f̂n(gn(λ)),

with gn as defined in (6.5), is called the discrete spectral average esti-
mator . The following result states its consistency for linear processes.

Theorem 6.2.4. Let Yt =
∑

u∈Z buZt−u, t ∈ Z, where Zt are iid with

E(Zt) = 0, E(Z4
t ) < ∞ and

∑
u∈Z |bu||u|1/2 < ∞. Then we have for

0 ≤ µ, λ ≤ 0.5

(i) limn→∞ E
(
f̂n(λ)

)
= f(λ),

(ii) limn→∞
Cov
(
f̂n(λ),f̂n(µ)

)(∑
|j|≤m a

2
jn

) =


2f 2(λ), λ = µ = 0 or 0.5

f 2(λ), 0 < λ = µ < 0.5

0, λ 6= µ.
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Condition (iv) in (6.11) on the weights together with (ii) in the preced-

ing result entails that Var(f̂n(λ))
n→∞−→ 0 for any λ ∈ [0, 0.5]. Together

with (i) we, therefore, obtain that the mean squared error of f̂n(λ)
vanishes asymptotically:

MSE(f̂n(λ)) = E
{(
f̂n(λ)− f(λ)

)2
}

= Var(f̂n(λ)) + Bias2(f̂n(λ))

−→n→∞ 0.

Proof. By the definition of the spectral density estimator in (6.9) we
have

|E(f̂n(λ))− f(λ)| =
∣∣∣ ∑
|j|≤m

ajn

{
E
(
In(gn(λ) + j/n))− f(λ)

}∣∣∣
=
∣∣∣ ∑
|j|≤m

ajn

{
E
(
In(gn(λ) + j/n))− f(gn(λ) + j/n)

+ f(gn(λ) + j/n)− f(λ)
}∣∣∣,

where (6.10) together with the uniform convergence of gn(λ) to λ
implies

max
|j|≤m

|gn(λ) + j/n− λ| n→∞−→ 0.

Choose ε > 0. The spectral density f of the process (Yt) is continuous
(Exercise 6.16), and hence we have

max
|j|≤m

|f(gn(λ) + j/n)− f(λ)| < ε/2

if n is sufficiently large. From Theorem 6.2.1 we know that in the case
E(Yt) = 0

max
|j|≤m

|E(In(gn(λ) + j/n))− f(gn(λ) + j/n)| < ε/2

if n is large. Condition (iii) in (6.11) together with the triangular

inequality implies |E(f̂n(λ))−f(λ)| < ε for large n. This implies part
(i).
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From the definition of f̂n we obtain

Cov(f̂n(λ), f̂n(µ))

=
∑
|j|≤m

∑
|k|≤m

ajnakn Cov
(
In(gn(λ) + j/n), In(gn(µ) + k/n)

)
.

If λ 6= µ and n sufficiently large we have gn(λ) + j/n 6= gn(µ) + k/n
for arbitrary |j|, |k| ≤ m. According to Remark 6.2.3 there exists a
universal constant C1 > 0 such that

|Cov(f̂n(λ), f̂n(µ))| =
∣∣∣ ∑
|j|≤m

∑
|k|≤m

ajnaknO(n−1)
∣∣∣

≤ C1n
−1
( ∑
|j|≤m

ajn

)2

≤ C1
2m+ 1

n

∑
|j|≤m

a2
jn,

where the final inequality is an application of the Cauchy–Schwarz
inequality. Since m/n

n→∞−→ 0, we have established (ii) in the case
λ 6= µ. Suppose now 0 < λ = µ < 0.5. Utilizing again Remark 6.2.3
we have

Var(f̂n(λ)) =
∑
|j|≤m

a2
jn

{
f 2(gn(λ) + j/n) +O(n−1/2)

}
+
∑
|j|≤m

∑
|k|≤m

ajnaknO(n−1) + o(n−1)

=: S1(λ) + S2(λ) + o(n−1).

Repeating the arguments in the proof of part (i) one shows that

S1(λ) =
( ∑
|j|≤m

a2
jn

)
f 2(λ) + o

( ∑
|j|≤m

a2
jn

)
.

Furthermore, with a suitable constant C2 > 0, we have

|S2(λ)| ≤ C2
1

n

( ∑
|j|≤m

ajn

)2
≤ C2

2m+ 1

n

∑
|j|≤m

a2
jn.
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Thus we established the assertion of part (ii) also in the case 0 < λ =
µ < 0.5. The remaining cases λ = µ = 0 and λ = µ = 0.5 are shown
in a similar way (Exercise 6.17).

The preceding result requires zero mean variables Yt. This might, how-
ever, be too restrictive in practice. Due to (4.5), the periodograms
of (Yt)1≤t≤n, (Yt − µ)1≤t≤n and (Yt − Ȳ )1≤t≤n coincide at Fourier fre-
quencies different from zero. At frequency λ = 0, however, they
will differ in general. To estimate f(0) consistently also in the case
µ = E(Yt) 6= 0, one puts

f̂n(0) := a0nIn(1/n) + 2
m∑
j=1

ajnIn
(
(1 + j)/n

)
. (6.12)

Each time the value In(0) occurs in the moving average (6.9), it is

replaced by f̂n(0). Since the resulting estimator of the spectral density
involves only Fourier frequencies different from zero, we can assume
without loss of generality that the underlying variables Yt have zero
mean.

Example 6.2.5. (Sunspot Data). We want to estimate the spectral
density underlying the Sunspot Data. These data, also known as
the Wolf or Wölfer (a student of Wolf) Data, are the yearly sunspot
numbers between 1749 and 1924. For a discussion of these data and
further literature we refer to Wei and Reilly (1989), Example 6.2.
Plot 6.2.1 shows the pertaining periodogram and Plot 6.2.1b displays
the discrete spectral average estimator with weights a0n = a1n = a2n =
3/21, a3n = 2/21 and a4n = 1/21, n = 176. These weights pertain
to a simple moving average of length 3 of a simple moving average
of length 7. The smoothed version joins the two peaks close to the
frequency λ = 0.1 visible in the periodogram. The observation that a
periodogram has the tendency to split a peak is known as the leakage
phenomenon.
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Plot 6.2.1: Periodogram for Sunspot Data.

Plot 6.2.1b: Discrete spectral average estimate for Sunspot Data.

1 /* sunspot_dsae.sas */
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2 TITLE1 ’Periodogram and spectral density estimate’;
3 TITLE2 ’Woelfer Sunspot Data’;
4

5 /* Read in the data */
6 DATA data1;
7 INFILE ’c:\data\sunspot.txt’;
8 INPUT num @@;
9

10 /* Computation of peridogram and estimation of spectral density */
11 PROC SPECTRA DATA=data1 P S OUT=data2;
12 VAR num;
13 WEIGHTS 1 2 3 3 3 2 1;
14

15 /* Adjusting different periodogram definitions */
16 DATA data3;
17 SET data2(FIRSTOBS=2);
18 lambda=FREQ/(2*CONSTANT(’PI’));
19 p=P_01/2;
20 s=S_01/2*4*CONSTANT(’PI’);
21

22 /* Graphical options */
23 SYMBOL1 I=JOIN C=RED V=NONE L=1;
24 AXIS1 LABEL=(F=CGREEK ’l’) ORDER=(0 TO .5 BY .05);
25 AXIS2 LABEL=NONE;
26

27 /* Plot periodogram and estimated spectral density */
28 PROC GPLOT DATA=data3;
29 PLOT p*lambda / HAXIS=AXIS1 VAXIS=AXIS2;
30 PLOT s*lambda / HAXIS=AXIS1 VAXIS=AXIS2;
31 RUN; QUIT;

In the DATA step the data of the sunspots are
read into the variable num.
Then PROC SPECTRA is applied to this vari-
able, whereby the options P (see Pro-
gram 6.1.1, airline whitenoise.sas) and S gen-
erate a data set stored in data2 containing
the periodogram data and the estimation of
the spectral density which SAS computes with

the weights given in the WEIGHTS statement.
Note that SAS automatically normalizes these
weights.
In following DATA step the slightly different def-
inition of the periodogram by SAS is being ad-
justed to the definition used here (see Pro-
gram 4.2.1, star periodogram.sas). Both plots
are then printed with PROC GPLOT.

A mathematically convenient way to generate weights ajn, which sat-
isfy the conditions (6.11), is the use of a kernel function. Let K :
[−1, 1] → [0,∞) be a symmetric function i.e., K(−x) = K(x), x ∈
[−1, 1], which satisfies

∫ 1
−1K

2(x) dx <∞. Let now m = m(n)
n→∞−→ ∞
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be an arbitrary sequence of integers with m/n
n→∞−→ 0 and put

ajn :=
K(j/m)∑m

i=−mK(i/m)
, −m ≤ j ≤ m. (6.13)

These weights satisfy the conditions (6.11) (Exercise 6.18).
Take for example K(x) := 1− |x|, −1 ≤ x ≤ 1. Then we obtain

ajn =
m− |j|
m2 , −m ≤ j ≤ m.

Example 6.2.6. (i) The truncated kernel is defined by

KT (x) =

{
1, |x| ≤ 1

0 elsewhere.

(ii) The Bartlett or triangular kernel is given by

KB(x) :=

{
1− |x|, |x| ≤ 1

0 elsewhere.

(iii) The Blackman–Tukey kernel (1949) is defined by

KBT (x) =

{
1− 2a+ 2a cos(x), |x| ≤ 1

0 elsewhere,

where 0 < a ≤ 1/4. The particular choice a = 1/4 yields the
Tukey–Hanning kernel .

(iv) The Parzen kernel (1957) is given by

KP (x) :=


1− 6|x|2 + 6|x|3, |x| < 1/2

2(1− |x|)3, 1/2 ≤ |x| ≤ 1

0 elsewhere.

We refer to Andrews (1991) for a discussion of these kernels.

Example 6.2.7. We consider realizations of the MA(1)-process Yt =
εt−0.6εt−1 with εt independent and standard normal for t = 1, . . . , n =
160. Example 5.3.2 implies that the process (Yt) has the spectral
density f(λ) = 1 − 1.2 cos(2πλ) + 0.36. We estimate f(λ) by means
of the Tukey–Hanning kernel.
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Plot 6.2.2: Discrete spectral average estimator (broken line) with
Blackman–Tukey kernel with parameters m = 10, a = 1/4 and un-
derlying spectral density f(λ) = 1− 1.2 cos(2πλ) + 0.36 (solid line).

1 /* ma1_blackman_tukey.sas */
2 TITLE1 ’Spectral density and Blackman-Tukey estimator’;
3 TITLE2 ’of MA(1)-process’;
4

5 /* Generate MA(1)-process */
6 DATA data1;
7 DO t=0 TO 160;
8 e=RANNOR(1);
9 y=e-.6*LAG(e);

10 OUTPUT;
11 END;
12

13 /* Estimation of spectral density */
14 PROC SPECTRA DATA=data1(FIRSTOBS=2) S OUT=data2;
15 VAR y;
16 WEIGHTS TUKEY 10 0;
17 RUN;
18

19 /* Adjusting different definitions */
20 DATA data3;
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21 SET data2;
22 lambda=FREQ/(2*CONSTANT(’PI’));
23 s=S_01/2*4*CONSTANT(’PI’);
24

25 /* Compute underlying spectral density */
26 DATA data4;
27 DO l=0 TO .5 BY .01;
28 f=1-1.2*COS(2*CONSTANT(’PI’)*l)+.36;
29 OUTPUT;
30 END;
31

32 /* Merge the data sets */
33 DATA data5;
34 MERGE data3(KEEP=s lambda) data4;
35

36 /* Graphical options */
37 AXIS1 LABEL=NONE;
38 AXIS2 LABEL=(F=CGREEK ’l’) ORDER=(0 TO .5 BY .1);
39 SYMBOL1 I=JOIN C=BLUE V=NONE L=1;
40 SYMBOL2 I=JOIN C=RED V=NONE L=3;
41

42 /* Plot underlying and estimated spectral density */
43 PROC GPLOT DATA=data5;
44 PLOT f*l=1 s*lambda=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;
45 RUN; QUIT;

In the first DATA step the realizations of an
MA(1)-process with the given parameters are
created. Thereby the function RANNOR, which
generates standard normally distributed data,
and LAG, which accesses the value of e of the
preceding loop, are used.
As in Program 6.2.1 (sunspot dsae.sas) PROC
SPECTRA computes the estimator of the spec-
tral density (after dropping the first observa-
tion) by the option S and stores them in data2.
The weights used here come from the Tukey–
Hanning kernel with a specified bandwidth of

m = 10. The second number after the TUKEY
option can be used to refine the choice of the
bandwidth. Since this is not needed here it is
set to 0.
The next DATA step adjusts the differ-
ent definitions of the spectral density used
here and by SAS (see Program 4.2.1,
star periodogram.sas). The following DATA
step generates the values of the underlying
spectral density. These are merged with the
values of the estimated spectral density and
then displayed by PROC GPLOT.

Confidence Intervals for Spectral Densities
The random variables In((k+j)/n)/f((k+j)/n), 0 < k+j < n/2, will
by Remark 6.2.3 for large n approximately behave like independent
and standard exponential distributed random variables Xj. This sug-
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gests that the distribution of the discrete spectral average estimator

f̂(k/n) =
∑
|j|≤m

ajnIn

(k + j

n

)
can be approximated by that of the weighted sum

∑
|j|≤m ajnXjf((k+

j)/n). Tukey (1949) showed that the distribution of this weighted sum
can in turn be approximated by that of cY with a suitably chosen
c > 0, where Y follows a gamma distribution with parameters p :=
ν/2 > 0 and b = 1/2 i.e.,

P{Y ≤ t} =
bp

Γ(p)

∫ t

0
xp−1 exp(−bx) dx, t ≥ 0,

where Γ(p) :=
∫∞

0 xp−1 exp(−x) dx denotes the gamma function. The
parameters ν and c are determined by the method of moments as
follows: ν and c are chosen such that cY has mean f(k/n) and its

variance equals the leading term of the variance expansion of f̂(k/n)
in Theorem 6.2.4 (Exercise 6.21):

E(cY ) = cν = f(k/n),

Var(cY ) = 2c2ν = f 2(k/n)
∑
|j|≤m

a2
jn.

The solutions are obviously

c =
f(k/n)

2

∑
|j|≤m

a2
jn

and

ν =
2∑

|j|≤m a
2
jn

.

Note that the gamma distribution with parameters p = ν/2 and
b = 1/2 equals the χ2-distribution with ν degrees of freedom if ν
is an integer. The number ν is, therefore, called the equivalent de-
gree of freedom. Observe that ν/f(k/n) = 1/c; the random vari-

able νf̂(k/n)/f(k/n) = f̂(k/n)/c now approximately follows a χ2(ν)-
distribution with the convention that χ2(ν) is the gamma distribution
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with parameters p = ν/2 and b = 1/2 if ν is not an integer. The in-
terval (

νf̂(k/n)

χ2
1−α/2(ν)

,
νf̂(k/n)

χ2
α/2(ν)

)
(6.14)

is a confidence interval for f(k/n) of approximate level 1 − α, α ∈
(0, 1). By χ2

q(ν) we denote the q-quantile of the χ2(ν)-distribution

i.e., P{Y ≤ χ2
q(ν)} = q, 0 < q < 1. Taking logarithms in (6.14), we

obtain the confidence interval for log(f(k/n))

Cν,α(k/n) :=
(

log(f̂(k/n)) + log(ν)− log(χ2
1−α/2(ν)),

log(f̂(k/n)) + log(ν)− log(χ2
α/2(ν))

)
.

This interval has constant length log(χ2
1−α/2 (ν)/χ2

α/2(ν)). Note that

Cν,α(k/n) is a level (1 − α)-confidence interval only for log(f(λ)) at
a fixed Fourier frequency λ = k/n, with 0 < k < [n/2], but not
simultaneously for λ ∈ (0, 0.5).

Example 6.2.8. In continuation of Example 6.2.7 we want to esti-
mate the spectral density f(λ) = 1−1.2 cos(2πλ)+0.36 of the MA(1)-
process Yt = εt− 0.6εt−1 using the discrete spectral average estimator
f̂n(λ) with the weights 1, 3, 6, 9, 12, 15, 18, 20, 21, 21, 21, 20, 18,
15, 12, 9, 6, 3, 1, each divided by 231. These weights are generated
by iterating simple moving averages of lengths 3, 7 and 11. Plot 6.2.3
displays the logarithms of the estimates, of the true spectral density
and the pertaining confidence intervals.
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Plot 6.2.3: Logarithms of discrete spectral average estimates (broken
line), of spectral density f(λ) = 1− 1.2 cos(2πλ) + 0.36 (solid line) of
MA(1)-process Yt = εt − 0.6εt−1, t = 1, . . . , n = 160, and confidence
intervals of level 1− α = 0.95 for log(f(k/n)).

1 /* ma1_logdsae.sas */
2 TITLE1 ’Logarithms of spectral density,’;
3 TITLE2 ’of their estimates and confidence intervals’;
4 TITLE3 ’of MA(1)-process’;
5

6 /* Generate MA(1)-process */
7 DATA data1;
8 DO t=0 TO 160;
9 e=RANNOR(1);

10 y=e-.6*LAG(e);
11 OUTPUT;
12 END;
13

14 /* Estimation of spectral density */
15 PROC SPECTRA DATA=data1(FIRSTOBS=2) S OUT=data2;
16 VAR y; WEIGHTS 1 3 6 9 12 15 18 20 21 21 21 20 18 15 12 9 6 3 1;
17 RUN;
18

19 /* Adjusting different definitions and computation of confidence bands
↪→ */

20 DATA data3; SET data2;
21 lambda=FREQ/(2*CONSTANT(’PI’));
22 log_s_01=LOG(S_01/2*4*CONSTANT(’PI’));
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23 nu=2/(3763/53361);
24 c1=log_s_01+LOG(nu)-LOG(CINV(.975,nu));
25 c2=log_s_01+LOG(nu)-LOG(CINV(.025,nu));
26

27 /* Compute underlying spectral density */
28 DATA data4;
29 DO l=0 TO .5 BY 0.01;
30 log_f=LOG((1-1.2*COS(2*CONSTANT(’PI’)*l)+.36));
31 OUTPUT;
32 END;
33

34 /* Merge the data sets */
35 DATA data5;
36 MERGE data3(KEEP=log_s_01 lambda c1 c2) data4;
37

38 /* Graphical options */
39 AXIS1 LABEL=NONE;
40 AXIS2 LABEL=(F=CGREEK ’l’) ORDER=(0 TO .5 BY .1);
41 SYMBOL1 I=JOIN C=BLUE V=NONE L=1;
42 SYMBOL2 I=JOIN C=RED V=NONE L=2;
43 SYMBOL3 I=JOIN C=GREEN V=NONE L=33;
44

45 /* Plot underlying and estimated spectral density */
46 PROC GPLOT DATA=data5;
47 PLOT log_f*l=1 log_s_01*lambda=2 c1*lambda=3 c2*lambda=3 / OVERLAY

↪→VAXIS=AXIS1 HAXIS=AXIS2;
48 RUN; QUIT;

This program starts identically to Program 6.2.2
(ma1 blackman tukey.sas) with the generation
of an MA(1)-process and of the computation
the spectral density estimator. Only this time
the weights are directly given to SAS.
In the next DATA step the usual adjustment of
the frequencies is done. This is followed by the
computation of ν according to its definition. The
logarithm of the confidence intervals is calcu-

lated with the help of the function CINV which
returns quantiles of a χ2-distribution with ν de-
grees of freedom.

The rest of the program which displays the
logarithm of the estimated spectral density,
of the underlying density and of the confi-
dence intervals is analogous to Program 6.2.2
(ma1 blackman tukey.sas).

Exercises
6.1. For independent random variables X, Y having continuous dis-
tribution functions it follows that P{X = Y } = 0. Hint: Fubini’s
theorem.

6.2. Let X1, . . . , Xn be iid random variables with values in R and
distribution function F . Denote by X1:n ≤ · · · ≤ Xn:n the pertaining
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order statistics. Then we have

P{Xk:n ≤ t} =
n∑
j=k

(
n

j

)
F (t)j(1− F (t))n−j, t ∈ R.

The maximum Xn:n has in particular the distribution function F n,
and the minimum X1:n has distribution function 1− (1− F )n. Hint:
{Xk:n ≤ t} =

{∑n
j=1 1(−∞,t](Xj) ≥ k

}
.

6.3. Suppose in addition to the conditions in Exercise 6.2 that F has
a (Lebesgue) density f . The ordered vector (X1:n, . . . , Xn:n) then has
a density

fn(x1, . . . , xn) = n!
n∏
j=1

f(xj), x1 < · · · < xn,

and zero elsewhere. Hint: Denote by Sn the group of permutations
of {1, . . . , n} i.e., (τ(1), . . . , (τ(n)) with τ ∈ Sn is a permutation of
(1, . . . , n). Put for τ ∈ Sn the set Bτ := {Xτ(1) < · · · < Xτ(n)}. These
sets are disjoint and we have P (

∑
τ∈Sn Bτ) = 1 since P{Xj = Xk} = 0

for i 6= j (cf. Exercise 6.1).

6.4. Let X and Y be independent, standard normal distributed
random variables. Show that (X,Z)T := (X, ρX +

√
1− ρ2Y )T ,

−1 < ρ < 1, is normal distributed with mean vector (0, 0) and co-

variance matrix

(
1 ρ
ρ 1

)
, and that X and Z are independent if and

only if they are uncorrelated (i.e., ρ = 0).

Suppose that X and Y are normal distributed and uncorrelated.
Does this imply the independence of X and Y ? Hint: Let X N(0, 1)-
distributed and define the random variable Y = V X with V inde-
pendent of X and P{V = −1} = 1/2 = P{V = 1}.

6.5. Generate 100 independent and standard normal random variables
εt and plot the periodogram. Is the hypothesis that the observations
were generated by a white noise rejected at level α = 0.05(0.01)? Visu-
alize the Bartlett-Kolmogorov-Smirnov test by plotting the empirical
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distribution function of the cumulated periodograms Sj, 1 ≤ j ≤ 48,
together with the pertaining bands for α = 0.05 and α = 0.01

y = x± cα√
m− 1

, x ∈ (0, 1).

6.6. Generate the values

Yt = cos

(
2π

1

6
t

)
+ εt, t = 1, . . . , 300,

where εt are independent and standard normal. Plot the data and the
periodogram. Is the hypothesis Yt = εt rejected at level α = 0.01?

6.7. (Share Data) Test the hypothesis that the share data were gener-
ated by independent and identically normal distributed random vari-
ables and plot the periodogramm. Plot also the original data.

6.8. (Kronecker’s lemma) Let (aj)j≥0 be an absolute summable com-
plexed valued filter. Show that limn→∞

∑n
j=0(j/n)|aj| = 0.

6.9. The normal distribution N(0, σ2) satisfies

(i)
∫
x2k+1 dN(0, σ2)(x) = 0, k ∈ N ∪ {0}.

(ii)
∫
x2k dN(0, σ2)(x) = 1 · 3 · · · · · (2k − 1)σ2k, k ∈ N.

(iii)
∫
|x|2k+1 dN(0, σ2)(x) = 2k+1

√
2π
k!σ2k+1, k ∈ N ∪ {0}.

6.10. Show that a χ2(ν)-distributed random variable satisfies E(Y ) =
ν and Var(Y ) = 2ν. Hint: Exercise 6.9.

6.11. (Slutzky’s lemma) Let X, Xn, n ∈ N, be random variables
in R with distribution functions FX and FXn

, respectively. Suppose
that Xn converges in distribution to X (denoted by Xn →D X) i.e.,
FXn

(t) → FX(t) for every continuity point of FX as n → ∞. Let
Yn, n ∈ N, be another sequence of random variables which converges
stochastically to some constant c ∈ R, i.e., limn→∞ P{|Yn−c| > ε} = 0
for arbitrary ε > 0. This implies

(i) Xn + Yn →D X + c.
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(ii) XnYn →D cX.

(iii) Xn/Yn →D X/c, if c 6= 0.

This entails in particular that stochastic convergence implies conver-
gence in distribution. The reverse implication is not true in general.
Give an example.

6.12. Show that the distribution function Fm of Fisher’s test statistic
κm satisfies under the condition of independent and identically normal
observations εt

Fm(x+ln(m)) = P{κm ≤ x+ln(m)} m→∞−→ exp(−e−x) =: G(x), x ∈ R.

The limiting distribution G is known as the Gumbel distribution.
Hence we have P{κm > x} = 1 − Fm(x) ≈ 1 − exp(−me−x). Hint:
Exercise 6.2 and 6.11.

6.13. Which effect has an outlier on the periodogram? Check this for
the simple model (Yt)t,...,n (t0 ∈ {1, . . . , n})

Yt =

{
εt, t 6= t0

εt + c, t = t0,

where the εt are independent and identically normal N(0, σ2) distri-
buted and c 6= 0 is an arbitrary constant. Show to this end

E(IY (k/n)) = E(Iε(k/n)) + c2/n

Var(IY (k/n)) = Var(Iε(k/n)) + 2c2σ2/n, k = 1, . . . , [(n− 1)/2].

6.14. Suppose that U1, . . . , Un are uniformly distributed on (0, 1) and

let F̂n denote the pertaining empirical distribution function. Show
that

sup
0≤x≤1

|F̂n(x)− x| = max
1≤k≤n

{
max

{
Uk:n −

(k − 1)

n
,
k

n
− Uk:n

}}
.

6.15. (Monte Carlo Simulation) For m large we have under the hy-
pothesis

P{
√
m− 1∆m−1 > cα} ≈ α.
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For different values of m (> 30) generate 1000 times the test statistic√
m− 1∆m−1 based on independent random variables and check, how

often this statistic exceeds the critical values c0.05 = 1.36 and c0.01 =
1.63. Hint: Exercise 6.14.

6.16. In the situation of Theorem 6.2.4 show that the spectral density
f of (Yt)t is continuous.

6.17. Complete the proof of Theorem 6.2.4 (ii) for the remaining cases
λ = µ = 0 and λ = µ = 0.5.

6.18. Verify that the weights (6.13) defined via a kernel function sat-
isfy the conditions (6.11).

6.19. Use the IML function ARMASIM to simulate the process

Yt = 0.3Yt−1 + εt − 0.5εt−1, 1 ≤ t ≤ 150,

where εt are independent and standard normal. Plot the periodogram
and estimates of the log spectral density together with confidence
intervals. Compare the estimates with the log spectral density of
(Yt)t∈Z.

6.20. Compute the distribution of the periodogram Iε(1/2) for inde-
pendent and identically normal N(0, σ2)-distributed random variables
ε1, . . . , εn in case of an even sample size n.

6.21. Suppose that Y follows a gamma distribution with parameters
p and b. Calculate the mean and the variance of Y .

6.22. Compute the length of the confidence interval Cν,α(k/n) for
fixed α (preferably α = 0.05) but for various ν. For the calculation of
ν use the weights generated by the kernel K(x) = 1−|x|, −1 ≤ x ≤ 1
(see equation (6.13)).

6.23. Show that for y ∈ R

1

n

∣∣∣ n−1∑
t=0

ei2πyt
∣∣∣2 =

∑
|t|<n

(
1− |t|

n

)
ei2πyt = Kn(y),
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where

Kn(y) =

n, y ∈ Z
1
n

(
sin(πyn)
sin(πy)

)2
, y /∈ Z,

is the Fejer kernel of order n. Verify that it has the properties

(i) Kn(y) ≥ 0,

(ii) the Fejer kernel is a periodic function of period length one,

(iii) Kn(y) = Kn(−y),

(iv)
∫ 0.5
−0.5Kn(y) dy = 1,

(v)
∫ δ
−δKn(y) dy

n→∞−→ 1, δ > 0.

6.24. (Nile Data) Between 715 and 1284 the river Nile had its lowest
annual minimum levels. These data are among the longest time series
in hydrology. Can the trend removed Nile Data be considered as being
generated by a white noise, or are these hidden periodicities? Estimate
the spectral density in this case. Use discrete spectral estimators as
well as lag window spectral density estimators. Compare with the
spectral density of an AR(1)-process.
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Chapter

7The Box–Jenkins
Program: A Case Study

This chapter deals with the practical application of the Box–Jenkins
Program to the Donauwoerth Data, consisting of 7300 discharge mea-
surements from the Donau river at Donauwoerth, specified in cubic
centimeter per second and taken on behalf of the Bavarian State Of-
fice For Environment between January 1st, 1985 and December 31st,
2004. For the purpose of studying, the data have been kindly made
available to the University of Würzburg.
As introduced in Section 2.3, the Box–Jenkins methodology can be
applied to specify adequate ARMA(p, q)-model Yt = a1Yt−1 + · · · +
apYt−p + εt + b1εt−1 + · · · + bqεt−q, t ∈ Z for the Donauwoerth data
in order to forecast future values of the time series. In short, the
original time series will be adjusted to represent a possible realization
of such a model. Based on the identification methods MINIC, SCAN
and ESACF, appropriate pairs of orders (p, q) are chosen in Section
7.5 and the corresponding model coefficients a1, . . . , ap and b1, . . . , bq
are determined. Finally, it is demonstrated by Diagnostic Checking in
Section 7.6 that the resulting model is adequate and forecasts based
on this model are executed in the concluding Section 7.7.
Yet, before starting the program in Section 7.4, some theoretical
preparations have to be carried out. In the first Section 7.1 we intro-
duce the general definition of the partial autocorrelation leading to
the Levinson–Durbin-Algorithm, which will be needed for Diagnostic
Checking. In order to verify whether pure AR(p)- or MA(q)-models
might be appropriate candidates for explaining the sample, we de-
rive in Section 7.2 and 7.3 asymptotic normal behaviors of suitable
estimators of the partial and general autocorrelations.
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7.1 Partial Correlation and Levinson–
Durbin Recursion

In general, the correlation between two random variables is often due
to the fact that both variables are correlated with other variables.
Therefore, the linear influence of these variables is removed to receive
the partial correlation.

Partial Correlation
The partial correlation of two square integrable, real valued random
variables X and Y , holding the random variables Z1, . . . , Zm,m ∈ N,
fixed, is defined as

Corr(X − X̂Z1,...,Zm, Y − ŶZ1,...,Zm)

=
Cov(X − X̂Z1,...,Zm, Y − ŶZ1,...,Zm)

(Var(X − X̂Z1,...,Zm))1/2(Var(Y − ŶZ1,...,Zm))1/2
,

provided that Var(X − X̂Z1,...,Zm) > 0 and Var(Y − ŶZ1,...,Zm) > 0,

where X̂Z1,...,Zm and ŶZ1,...,Zm denote best linear approximations of X
and Y based on Z1, . . . , Zm, respectively.
Let (Yt)t∈Z be an ARMA(p, q)-process satisfying the stationarity con-
dition (2.4) with expectation E(Yt) = 0 and variance γ(0) > 0. The
partial autocorrelation α(t, k) for k > 1 is the partial correlation
of Yt and Yt−k, where the linear influence of the intermediate vari-
ables Yi, t − k < i < t, is removed, i.e., the best linear approxima-
tion of Yt based on the k − 1 preceding process variables, denoted
by Ŷt,k−1 :=

∑k−1
i=1 âiYt−i. Since Ŷt,k−1 minimizes the mean squared

error E((Yt − Ỹt,a,k−1)
2) among all linear combinations Ỹt,a,k−1 :=∑k−1

i=1 aiYt−i,a := (a1, . . . , ak−1)
T ∈ Rk−1 of Yt−k+1, . . . , Yt−1, we find,

due to the stationarity condition, that Ŷt−k,−k+1 :=
∑k−1

i=1 âiYt−k+i is
a best linear approximation of Yt−k based on the k − 1 subsequent
process variables. Setting Ŷt,0 = 0 in the case of k = 1, we obtain, for
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k > 0,

α(t, k) := Corr(Yt − Ŷt,k−1, Yt−k − Ŷt−k,−k+1)

=
Cov(Yt − Ŷt,k−1, Yt−k − Ŷt−k,−k+1)

Var(Yt − Ŷt,k−1)
.

Note that Var(Yt − Ŷt,k−1) > 0 is provided by the preliminary con-
ditions, which will be shown later by the proof of Theorem 7.1.1.
Observe moreover that Ŷt+h,k−1 =

∑k−1
i=1 âiYt+h−i for all h ∈ Z, imply-

ing α(t, k) = Corr(Yt−Ŷt,k−1, Yt−k−Ŷt−k,−k+1) = Corr(Yk−Ŷk,k−1, Y0−
Ŷ0,−k+1) = α(k, k). Consequently the partial autocorrelation function
can be more conveniently written as

α(k) :=
Cov(Yk − Ŷk,k−1, Y0 − Ŷ0,−k+1)

Var(Yk − Ŷk,k−1)
(7.1)

for k > 0 and α(0) = 1 for k = 0. For negative k, we set α(k) :=
α(−k).
The determination of the partial autocorrelation coefficient α(k) at lag
k > 1 entails the computation of the coefficients of the correspond-
ing best linear approximation Ŷk,k−1, leading to an equation system
similar to the normal equations coming from a regression model. Let
Ỹk,a,k−1 = a1Yk−1 + · · ·+ ak−1Y1 be an arbitrary linear approximation
of Yk based on Y1, . . . , Yk−1. Then, the mean squared error is given by

E((Yk − Ỹk,a,k−1)
2) = E(Y 2

k )− 2 E(YkỸk,a,k−1) + E(Ỹ 2
k,a,k−1)

= E(Y 2
k )− 2

k−1∑
l=1

al E(YkYk−l)

+
k−1∑
i=1

k−1∑
j=1

E(aiajYk−iYk−j)

Computing the partial derivatives and equating them to zero yields

2â1 E(Yk−1Yk−1) + · · ·+ 2âk−1 E(Yk−1Y1)− 2 E(Yk−1Yk) = 0,

2â1 E(Yk−2Yk−1) + · · ·+ 2âk−1 E(Yk−2Y1)− 2 E(Yk−2Yk) = 0,
...

2â1 E(Y1Yk−1) + · · ·+ 2âk−1 E(Y1Y1)− 2 E(Y1Yk) = 0.
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Or, equivalently, written in matrix notation

Vyyâ = VyYk

with vector of coefficients â := (â1, . . . , âk−1)
T ,y := (Yk−1, . . . , Y1)

T

and matrix representation

Vwz :=
(
E(WiZj)

)
ij
,

where w := (W1, . . . ,Wn)
T , z := (Z1, . . . , Zm)T , n,m ∈ N, denote

random vectors. So, if the matrix Vyy is regular, we attain a uniquely
determined solution of the equation system

â = V −1
yy VyYk.

Since the ARMA(p, q)-process (Yt)t∈Z has expectation zero, above
representations divided by the variance γ(0) > 0 carry over to the
Yule-Walker equations of order k − 1 as introduced in Section 2.2

Pk−1


â1
â2
...

âk−1

 =


ρ(1)
ρ(2)

...
ρ(k − 1)

 , (7.2)

or, respectively, 
â1
â2
...

âk−1

 = P−1
k−1


ρ(1)
ρ(2)

...
ρ(k − 1)

 (7.3)

if P−1
k−1 is regular. A best linear approximation Ŷk,k−1 of Yk based

on Y1, . . . , Yk−1 obviously has to share this necessary condition (7.2).

Since Ŷk,k−1 equals a best linear one-step forecast of Yk based on

Y1, . . . , Yk−1, Lemma 2.3.2 shows that Ŷk,k−1 = âTy is a best linear

approximation of Yk. Thus, if P−1
k−1 is regular, then Ŷk,k−1 is given by

Ŷk,k−1 = âTy = VYkyV
−1
yy y. (7.4)

The next Theorem will now establish the necessary regularity of Pk.
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Theorem 7.1.1. If (Yt)t∈Z is an ARMA(p, q)-process satisfying the
stationarity condition with E(Yt) = 0,Var(Yt) > 0 and Var(εt) = σ2,
then, the covariance matrix Σk of Yt,k := (Yt+1, . . . , Yt+k)

T is regular
for every k > 0.

Proof. Let Yt =
∑

v≥0 αvεt−v, t ∈ Z, be the almost surely stationary
solution of (Yt)t∈Z with absolutely summable filter (αv)v≥0. The au-
tocovariance function γ(k) of (Yt)t∈Z is absolutely summable as well,
since ∑

k∈Z

|γ(k)| < 2
∑
k≥0

|γ(k)| = 2
∑
k≥0

|E(YtYt+k)|

= 2
∑
k≥0

∣∣∣∑
u≥0

∑
v≥0

αuαv E(εt−uεt+k−v)
∣∣∣

= 2σ2
∑
k≥0

∣∣∣∑
u≥0

αuαu+k

∣∣∣
≤ 2σ2

∑
u≥0

|αu|
∑
w≥0

|αw| <∞.

Suppose now that Σk is singular for a k > 1. Then, there exists
a maximum integer κ ≥ 1 such that Σκ is regular. Thus, Σκ+1
is singular. This entails in particular the existence of a non-zero
vector λκ+1 := (λ1, . . . , λκ+1)

T ∈ Rκ+1 with λTκ+1Σκ+1λκ+1 = 0.
Therefore, Var(λTκ+1Yt,κ+1) = 0 since the process has expectation
zero. Consequently, λTκ+1Yt,κ+1 is a constant. It has expectation

zero and is therefore constant zero. Hence, Yt+κ+1 =
∑κ

i=1
λi
λκ+1

Yt+i
for each t ∈ Z, which implies the existence of a non-zero vector

λ
(t)
κ := (λ

(t)
1 , . . . , λ

(t)
κ )T ∈ Rκ with Yt+κ+1 =

∑κ
i=1 λ

(t)
i Yi = λ

(t)T
κ Y0,κ.

Note that λκ+1 6= 0, since otherwise Σκ would be singular. Because of
the regularity of Σκ, we find a diagonal matrix Dκ and an orthogonal
matrix Sκ such that

γ(0) = Var(Yt+κ+1) = λ(t)T
κ Σκλ

(t)
κ = λ(t)T

κ SκDκS
T
κλ

(t)
κ .

The diagonal elements ofDκ are the positive eigenvalues of Σκ, whose
smallest eigenvalue will be denoted by µκ,min. Hence,

∞ > γ(0) ≥ µκ,minλ
(t)T
κ SκS

T
κλ

(t)
κ = µκ,min

κ∑
i=1

λ
(t)2
i .
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This shows the boundedness of λ
(t)
i for a fixed i. On the other hand,

γ(0) = Cov
(
Yt+κ+1,

κ∑
i=1

λ
(t)
i Yi

)
≤

κ∑
i=1

|λ(t)
i ||γ(t+ κ+ 1− i)|.

Since γ(0) > 0 and γ(t+κ+1−i)→ 0 as t→∞, due to the absolutely
summability of γ(k), this inequality would produce a contradiction.
Consequently, Σk is regular for all k > 0.

The Levinson–Durbin Recursion
The power of an approximation Ŷk of Yk can be measured by the part
of unexplained variance of the residuals. It is defined as follows:

P (k − 1) :=
Var(Yk − Ŷk,k−1)

Var(Yk)
, (7.5)

if Var(Yk) > 0. Observe that the greater the power, the less precise

the approximation Ŷk performs. Let again (Yt)t∈Z be an ARMA(p, q)-
process satisfying the stationarity condition with expectation E(Yt) =

0 and variance Var(Yt) > 0. Furthermore, let Ŷk,k−1 :=
∑k−1

u=1 âu(k −
1)Yk−u denote the best linear approximation of Yk based on the k− 1
preceding random variables for k > 1. Then, equation (7.4) and
Theorem 7.1.1 provide

P (k − 1) :=
Var(Yk − Ŷk,k−1)

Var(Yk)
=

Var(Yk − VYkyV −1
yy y)

Var(Yk)

=
1

Var(Yk)

(
Var(Yk) + Var(VYkyV

−1
yy y)− 2 E(YkVYkyV

−1
yy y)

)
=

1

γ(0)

(
γ(0) + VYkyV

−1
yy VyyV

−1
yy VyYk − 2VYkyV

−1
yy VyYk

)
=

1

γ(0)

(
γ(0)− VYkyâ(k − 1)

)
= 1−

k−1∑
i=1

ρ(i)âi(k − 1) (7.6)

where â(k − 1) := (â1(k − 1), â2(k − 1), . . . , âk−1(k − 1))T . Note that
P (k − 1) 6= 0 is provided by the proof of the previous Theorem 7.1.1.
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In order to determine the coefficients of the best linear approximation
Ŷk,k−1 we have to solve (7.3). A well-known algorithm simplifies this
task by evading the computation of the inverse matrix.

Theorem 7.1.2. (The Levinson–Durbin Recursion) Let (Yt)t∈Z be an
ARMA(p, q)-process satisfying the stationarity condition with expec-

tation E(Yt) = 0 and variance Var(Yt) > 0. Let Ŷk,k−1 =
∑k−1

u=1 âu(k−
1)Yk−u denote the best linear approximation of Yk based on the k − 1
preceding process values Yk−1, . . . , Y1 for k > 1. Then,

(i) âk(k) = ω(k)/P (k − 1),

(ii) âi(k) = âi(k− 1)− âk(k)âk−i(k− 1) for i = 1, . . . , k− 1, as well
as

(iii) P (k) = P (k − 1)(1− â2
k(k)),

where P (k− 1) = 1−
∑k−1

i=1 ρ(i)âi(k− 1) denotes the power of approx-
imation and where

ω(k) := ρ(k)− â1(k − 1)ρ(k − 1)− · · · − âk−1(k − 1)ρ(1).

Proof. We carry out two best linear approximations of Yt, Ŷt,k−1 :=∑k−1
u=1 âu(k − 1)Yt−u and Ŷt,k :=

∑k
u=1 âu(k)Yt−u, which lead to the

Yule-Walker equations (7.3) of order k − 1
1 ρ(1) ... ρ(k−2)
ρ(1) 1 ρ(k−3)
ρ(2) ρ(1) ρ(k−4)
... ... ...

ρ(k−2) ρ(k−3) ... 1




â1(k−1)
â2(k−1)
â3(k−1)

...
âk−1(k−1)

 =


ρ(1)
ρ(2)
ρ(3)
...

ρ(k−1)

 (7.7)

and order k
1 ρ(1) ρ(2) ... ρ(k−1)
ρ(1) 1 ρ(1) ρ(k−2)
ρ(2) ρ(1) 1 ρ(k−3)
... ... ...

ρ(k−1) ρ(k−2) ρ(k−3) ... 1




â1(k)
â2(k)
â3(k)

...
âk(k)

 =


ρ(1)
ρ(2)
ρ(3)
...

ρ(k)

 .
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Latter equation system can be written as
1 ρ(1) ρ(2) ... ρ(k−2)
ρ(1) 1 ρ(1) ρ(k−3)
ρ(2) ρ(1) 1 ρ(k−4)
... ... ...

ρ(k−2) ρ(k−3) ρ(k−4) ... 1




â1(k)
â2(k)
â3(k)

...
âk−1(k)


+ âk(k)


ρ(k−1)
ρ(k−2)
ρ(k−3)

...
ρ(1)

 =


ρ(1)
ρ(2)
ρ(3)
...

ρ(k−1)


and

ρ(k − 1)â1(k) + ρ(k − 2)â2(k) + · · ·+ ρ(1)âk−1(k) + âk(k) = ρ(k).
(7.8)

From (7.7), we obtain
1 ρ(1) ρ(2) ... ρ(k−2)
ρ(1) 1 ρ(1) ρ(k−3)
ρ(2) ρ(1) 1 ρ(k−4)
... ... ...

ρ(k−2) ρ(k−3) ρ(k−4) ... 1




â1(k)
â2(k)
â3(k)

...
âk−1(k)


+ âk(k)


1 ρ(1) ρ(2) ... ρ(k−2)
ρ(1) 1 ρ(1) ρ(k−3)
ρ(2) ρ(1) 1 ρ(k−4)
... ... ...

ρ(k−2) ρ(k−3) ρ(k−4) ... 1




âk−1(k−1)
âk−2(k−1)
âk−3(k−1)

...
â1(k−1)


=


1 ρ(1) ρ(2) ... ρ(k−2)
ρ(1) 1 ρ(1) ρ(k−3)
ρ(2) ρ(1) 1 ρ(k−4)
... ... ...

ρ(k−2) ρ(k−3) ρ(k−4) ... 1




â1(k−1)
â2(k−1)
â3(k−1)

...
âk−1(k−1)


Multiplying P−1

k−1 to the left we get
â1(k)
â2(k)
â3(k)

...
âk−1(k)

 =


â1(k−1)
â2(k−1)
â3(k−1)

...
âk−1(k−1)

− âk(k)


âk−1(k−1)
âk−2(k−1)
âk−3(k−1)

...
â1(k−1)

 .

This is the central recursion equation system (ii). Applying the corre-
sponding terms of â1(k), . . . , âk−1(k) from the central recursion equa-
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tion to the remaining equation (7.8) yields

âk(k)(1− â1(k − 1)ρ(1)− â2(k − 1)ρ(2)− . . . âk−1(k − 1)ρ(k − 1))

= ρ(k)− (â1(k − 1)ρ(k − 1) + · · ·+ âk−1(k − 1)ρ(1))

or, respectively,

âk(k)P (k − 1) = ω(k)

which proves (i). From (i) and (ii), it follows (iii),

P (k) = 1− â1(k)ρ(1)− · · · − âk(k)ρ(k)

= 1− â1(k − 1)ρ(1)− · · · − âk−1(k − 1)ρ(k − 1)− âk(k)ρ(k)

+ âk(k)ρ(1)âk−1(k − 1) + · · ·+ âk(k)ρ(k − 1)â1(k − 1)

= P (k − 1)− âk(k)ω(k)

= P (k − 1)(1− âk(k)2).

We have already observed several similarities between the general defi-
nition of the partial autocorrelation (7.1) and the definition in Section
2.2. The following theorem will now establish the equivalence of both
definitions in the case of zero-mean ARMA(p, q)-processes satisfying
the stationarity condition and Var(Yt) > 0.

Theorem 7.1.3. The partial autocorrelation α(k) of an ARMA(p, q)-
process (Yt)t∈Z satisfying the stationarity condition with expectation
E(Yt) = 0 and variance Var(Yt) > 0 equals, for k > 1, the coefficient

âk(k) in the best linear approximation Ŷk+1,k = â1(k)Yk+ · · ·+ âk(k)Y1
of Yk+1.

Proof. Applying the definition of α(k), we find, for k > 1,

α(k) =
Cov(Yk − Ŷk,k−1, Y0 − Ŷ0,−k+1)

Var(Yk − Ŷk,k−1)

=
Cov(Yk − Ŷk,k−1, Y0) + Cov(Yk − Ŷk,k−1,−Ŷ0,−k+1)

Var(Yk − Ŷk,k−1)

=
Cov(Yk − Ŷk,k−1, Y0)

Var(Yk − Ŷk,k−1)
.
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The last step follows from (7.2), which implies that Yk − Ŷk,k−1 is

uncorrelated with Y1, . . . , Yk−1. Setting Ŷk,k−1 =
∑k−1

u=1 âu(k − 1)Yk−u,
we attain for the numerator

Cov(Yk − Ŷk,k−1, Y0) = Cov(Yk, Y0)− Cov(Ŷk,k−1, Y0)

= γ(k)−
k−1∑
u=1

âu(k − 1) Cov(Yk−u, Y0)

= γ(0)(ρ(k)−
k−1∑
u=1

âu(k − 1)ρ(k − u)).

Now, applying the first formula of the Levinson–Durbin Theorem 7.1.2
finally leads to

α(k) =
γ(0)(ρ(k)−

∑k−1
u=1 âu(k − 1)ρ(k − u))

γ(0)P (k − 1)

=
γ(0)P (k − 1)âk(k)

γ(0)P (k − 1)

= âk(k).

Partial Correlation Matrix
We are now in position to extend the previous definitions to random
vectors. Let y := (Y1, . . . , Yk)

T and x := (X1, . . . , Xm)T be in the
following random vectors of square integrable, real valued random
variables. The partial covariance matrix of y with X1, . . . , Xm being
held fix is defined as

Vyy,x :=
(

Cov(Yi − Ŷi,x, Yj − Ŷj,x)
)

1≤i,j≤k
,

where Ŷi,x denotes the best linear approximation of Yi,x based on
X1, . . . , Xm for i = 1, . . . , k. The partial correlation matrix of y,
where the linear influence of X1, . . . , Xm is removed, is accordingly
defined by

Ryy,x :=
(

Corr(Yi − Ŷi,x, Yj − Ŷj,x)
)

1≤i,j≤k
,
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if Var(Yi − Ŷi,x) > 0 for each i ∈ {1, . . . , k}.
Lemma 7.1.4. Consider above notations with E(y) = 0 as well as
E(x) = 0, where 0 denotes the zero vector in Rk and Rm, respectively.
Let furthermore Vwz denote the covariance matrix of two random vec-
tors w and z. Then, if Vxx is regular, the partial covariance matrix
Vyy,x satisfies

Vyy,x = Vyy − VyxV −1
xx Vxy.

Proof. For arbitrary i, j ∈ {1, . . . , k}, we get

Cov(Yi, Yj) = Cov(Yi − Ŷi,x + Ŷi,x, Yj − Ŷj,x + Ŷj,x)

= Cov(Yi − Ŷi,x, Yj − Ŷj,x) + Cov(Ŷi,x, Ŷj,x)

+ E(Ŷi,x(Yj − Ŷj,x)) + E(Ŷj,x(Yi − Ŷi,x))

= Cov(Yi − Ŷi,x, Yj − Ŷj,x) + Cov(Ŷi,x, Ŷj,x) (7.9)

or, equivalently,

Vyy = Vyy,x + Vŷxŷx
,

where ŷx := (Ŷ1,x, . . . , Ŷk,x)T . The last step in (7.9) follows from the

circumstance that the approximation errors (Yi − Ŷi,x) of the best
linear approximation are uncorrelated with every linear combination
of X1, . . . , Xm for every i = 1, . . . n, due to the partial derivatives
of the mean squared error being equal to zero as described at the
beginning of this section. Furthermore, (7.4) implies that

ŷx = VyxV
−1
xx x.

Hence, we finally get

Vŷxŷx
= VyxV

−1
xx VxxV

−1
xx Vxy

= VyxV
−1
xx Vxy,

which completes the proof.

Lemma 7.1.5. Consider the notations and conditions of Lemma 7.1.4.
If Vyy,x is regular, then,(
Vxx Vxy
Vyx Vyy

)−1

=

(
V −1
xx + V −1

xx VxyV
−1
yy,xVyxV

−1
xx −V −1

xx VxyV
−1
yy,x

−V −1
yy,xVyxV

−1
xx V −1

yy,x

)
.
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Proof. The assertion follows directly from the previous Lemma 7.1.4.

7.2 Asymptotic Normality of Partial Auto-
correlation Estimator

The following table comprises some behaviors of the partial and gen-
eral autocorrelation function with respect to the type of process.

process autocorrelation partial autocorrelation
type function function

MA(q) finite infinite
ρ(k) = 0 for k > q

AR(p) infinite finite
α(k) = 0 for k > p

ARMA(p, q) infinite infinite

Knowing these qualities of the true partial and general autocorre-
lation function we expect a similar behavior for the corresponding
empirical counterparts. In general, unlike the theoretic function, the
empirical partial autocorrelation computed from an outcome of an
AR(p)-process won’t vanish after lag p. Nevertheless the coefficients
after lag p will tend to be close to zero. Thus, if a given time series
was actually generated by an AR(p)-process, then the empirical par-
tial autocorrelation coefficients will lie close to zero after lag p. The
same is true for the empirical autocorrelation coefficients after lag q,
if the time series was actually generated by a MA(q)-process. In order
to justify AR(p)- or MA(q)-processes as appropriate model candidates
for explaining a given time series, we have to verify if the values are
significantly close to zero. To this end, we will derive asymptotic dis-
tributions of suitable estimators of these coefficients in the following
two sections.

Cramer–Wold Device
Definition 7.2.1. A sequence of real valued random variables (Yn)n∈N,
defined on some probability space (Ω,A,P), is said to be asymptoti-
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cally normal with asymptotic mean µn and asymptotic variance σ2
n >

0 for sufficiently large n, written as Yn ≈ N(µn, σ
2
n), if σ−1

n (Yn − µn)
D→

Y as n→∞, where Y is N(0,1)-distributed.

We want to extend asymptotic normality to random vectors, which
will be motivated by the Cramer–Wold Device 7.2.4. However, in
order to simplify proofs concerning convergence in distribution, we
first characterize convergence in distribution in terms of the sequence
of the corresponding characteristic functions.
Let Y be a real valued random k-vector with distribution function
F (x). The characteristic function of F (x) is then defined as the
Fourier transformation

φY (t) := E(exp(itTY )) =

∫
Rk

exp(itTx)dF (x)

for t ∈ Rk. In many cases of proving weak convergence of a sequence

of random k-vectors Yn
D→ Y as n → ∞, it is often easier to show

the pointwise convergence of the corresponding sequence of charac-
teristic functions φYn(t)→ φY (t) for every t ∈ Rk. The following two
Theorems will establish this equivalence.

Theorem 7.2.2. Let Y ,Y1,Y2,Y3, . . . be real valued random k-vectors,
defined on some probability space (Ω,A,P). Then, the following con-
ditions are equivalent

(i) Yn
D→ Y as n→∞,

(ii) E(ϑ(Yn))→ E(ϑ(Y )) as n→∞ for all bounded and continuous
functions ϑ : Rk → R,

(iii) E(ϑ(Yn))→ E(ϑ(Y )) as n→∞ for all bounded and uniformly
continuous functions ϑ : Rk → R,

(iv) lim supn→∞ P ({Yn ∈ C}) ≤ P ({Y ∈ C}) for any closed set
C ⊂ Rk,

(v) lim infn→∞ P ({Yn ∈ O}) ≥ P ({Y ∈ O}) for any open set O ⊂
Rk.
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Proof. (i) ⇒ (ii): Suppose that F (x), Fn(x) denote the correspond-
ing distribution functions of real valued random k-vectors Y ,Yn for
all n ∈ N, respectively, satisfying Fn(x) → F (x) as n → ∞ for ev-
ery continuity point x of F (x). Let ϑ : Rk → R be a bounded and
continuous function, which is obviously bounded by the finite value
B := supx{|ϑ(x)|}. Now, given ε > 0, we find, due to the right-
continuousness, continuity points ±C := ±(C1, . . . , Ck)

T of F (x),
with Cr 6= 0 for r = 1, . . . , k and a compact set K := {(x1, . . . , xk) :
−Cr ≤ xr ≤ Cr, r = 1, . . . , k} such that P{Y /∈ K} < ε/B. Note
that this entails P{Yn /∈ K} < 2ε/B for n sufficiently large. Now, we
choose l ≥ 2 continuity points xj := (xj1, . . . , xjk)

T , j ∈ {1, . . . , l},
of F (x) such that −Cr = x1r < · · · < xlr = Cr for each r ∈
{1, . . . , k} and such that supx∈K |ϑ(x) − ϕ(x)| < ε, where ϕ(x) :=∑l−1

i=1 ϑ(xi)1(xi,xi+1](x). Then, we attain, for n sufficiently large,

|E(ϑ(Yn))− E(ϑ(Y ))|
≤ |E(ϑ(Yn)1K(Yn))− E(ϑ(Y )1K(Y ))|

+ E(|ϑ(Yn|))1Kc(Yn) + E(|ϑ(Y )|)1Kc(Y )

< |E(ϑ(Yn)1K(Yn))− E(ϑ(Y )1K(|Y |))|+B · 2ε/B +B · ε/B
≤ |E(ϑ(Yn)1K(Yn))− E(ϕ(Yn))|+ |E(ϕ(Yn))− E(ϕ(Y ))|

+ |E(ϕ(Y ))− E(ϑ(Y )1K(Y ))|+ 3ε

< |E(ϕ(Yn))− E(ϕ(Y ))|+ 5ε,

where Kc denotes the complement of K and where 1A(·) denotes the
indicator function of a set A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0
else. As ε > 0 was chosen arbitrarily, it remains to show E(ϕ(Yn))→
E(ϕ(Y )) as n→∞, which can be seen as follows:

E(ϕ(Yn)) =
l−1∑
i=1

ϑ(xi)(Fn(xi+1)− Fn(xi))

→
l−1∑
i=1

ϑ(xi)(F (xi+1)− F (xi)) = E(ϕ(Y ))

as n→∞.
(ii)⇒ (iv): Let C ⊂ Rk be a closed set. We define ψC(y) := inf{||y−
x|| : x ∈ C}, ψ : Rk → R, which is a continuous function, as well as
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ξi(z) := 1(−∞,0](z) + (1 − iz)1(0,i−1](z), z ∈ R, for every i ∈ N. Hence
ϑi,C(y) := ξi(ψC(y)) is a continuous and bounded function with ϑi,C :
Rk → R for each i ∈ N. Observe moreover that ϑi,C(y) ≥ ϑi+1,C(y)
for each i ∈ N and each fixed y ∈ Rk as well as ϑi,C(y) → 1C(y) as
i→∞ for each y ∈ Rk. From (ii), we consequently obtain

lim sup
n→∞

P ({Yn ∈ C}) ≤ lim
n→∞

E(ϑi,C(Yn)) = E(ϑi,C(Y ))

for each i ∈ N. The dominated convergence theorem finally provides
that E(ϑi,C(Y ))→ E(1C(Y )) = P ({Y ∈ C}) as i→∞.
(iv) and (v) are equivalent since the complement Oc of an open set
O ⊂ Rk is closed.
(iv), (v) ⇒ (i): (iv) and (v) imply that

P ({Y ∈ (−∞,y)}) ≤ lim inf
n→∞

P ({Yn ∈ (−∞,y)})

≤ lim inf
n→∞

Fn(y) ≤ lim sup
n→∞

Fn(y)

= lim sup
n→∞

P ({Yn ∈ (−∞,y]})

≤ P ({Y ∈ (−∞,y]}) = F (y). (7.10)

If y is a continuity point of F (x), i.e., P ({Y ∈ (−∞,y)}) = F (y),
then above inequality (7.10) shows limn→∞ Fn(y) = F (y).
(i) ⇔ (iii): (i) ⇒ (iii) is provided by (i) ⇒ (ii). Since ϑi,C(y) =
ξi(ψC(y)) from step (ii) ⇒ (iv) is moreover a uniformly continuous
function, the equivalence is shown.

Theorem 7.2.3. (Continuity Theorem) A sequence (Yn)n∈N of real
valued random k-vectors, all defined on a probability space (Ω,A,P),
converges in distribution to a random k-vector Y as n → ∞ iff the
corresponding sequence of characteristic functions (φYn(t))n∈N con-
verges pointwise to the characteristic function φY (t) of the distribution
function of Y for each t = (t1, t2, . . . , tk) ∈ Rk.

Proof. ⇒: Suppose that (Yn)n∈N
D→ Y as n → ∞. Since both the

real and imaginary part of φYn(t) = E(exp(itTYn)) = E(cos(tTYn)) +
iE(sin(tTYn)) is a bounded and continuous function, the previous
Theorem 7.2.2 immediately provides that φYn(t) → φY (t) as n → ∞
for every fixed t ∈ Rk.
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⇐: Let ϑ : Rk → R be a uniformly continuous and bounded function
with |ϑ| ≤ M,M ∈ R+. Thus, for arbitrary ε > 0, we find δ > 0
such that |y − x| < δ ⇒ |ϑ(y) − ϑ(x)| < ε for all y,x ∈ Rk. With
Theorem 7.2.2 it suffices to show that E(ϑ(Yn)) → E(ϑ(Y )) as n →
∞. Consider therefore Yn + σX and Y + σX, where σ > 0 and X
is a k-dimensional standard normal vector independent of Y and Yn
for all n ∈ N. So, the triangle inequality provides

|E(ϑ(Yn))− E(ϑ(Y ))| ≤|E(ϑ(Yn))− E(ϑ(Yn + σX))|
+ |E(ϑ(Yn + σX))− E(ϑ(Y + σX))|
+ |E(ϑ(Y + σX))− E(ϑ(Y ))|, (7.11)

where the first term on the right-hand side satisfies, for σ sufficiently
small,

|E(ϑ(Yn))− E(ϑ(Yn + σX))|
≤ E(|ϑ(Yn)− ϑ(Yn + σX)|1[−δ,δ](|σX|)

+ E(|ϑ(Yn)− ϑ(Yn + σX)|1(−∞,−δ)∪(δ,∞)(|σX|)
< ε+ 2MP{|σX| > δ} < 2ε.

Analogously, the third term on the right-hand side in (7.11) is bounded
by 2ε for sufficiently small σ. Hence, it remains to show that E(ϑ(Yn+
σX)) → E(ϑ(Y + σX)) as n → ∞. By Fubini’s Theorem and sub-
stituting z = y + x, we attain (Pollard, 1984, p. 54)

E(ϑ(Yn + σX))

= (2πσ2)−k/2
∫

Rk

∫
Rk
ϑ(y + x) exp

(
− x

Tx

2σ2

)
dx dFn(y)

= (2πσ2)−k/2
∫

Rk

∫
Rk
ϑ(z) exp

(
− 1

2σ2 (z − y)T (z − y)
)
dFn(y) dz,

where Fn denotes the distribution function of Yn. Since the charac-
teristic function of σX is bounded and is given by

φσX(t) = E(exp(itTσX))

=

∫
Rk

exp(itTx)(2πσ2)−k/2 exp
(
− x

Tx

2σ2

)
dx

= exp(−1

2
tT tσ2),
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due to the Gaussian integral, we finally obtain the desired assertion
from the dominated convergence theorem and Fubini’s Theorem,

E(ϑ(Yn + σX))

= (2πσ2)−k/2
∫

Rk

∫
Rk
ϑ(z)

(σ2

2π

)k/2
·∫

Rk
exp

(
ivT (z − y)− σ2

2
vTv

)
dv dFn(y) dz

= (2π)−k
∫

Rk
ϑ(z)

∫
Rk
φYn(−v) exp

(
ivTz − σ2

2
vTv

)
dv dz

→ (2π)−k
∫

Rk
ϑ(z)

∫
Rk
φY (−v) exp

(
ivTz − σ2

2
vTv

)
dv dz

= E(ϑ(Y + σX))

as n→∞.

Theorem 7.2.4. (Cramer–Wold Device) Let (Yn)n∈N, be a sequence
of real valued random k-vectors and let Y be a real valued random k-

vector, all defined on some probability space (Ω,A,P). Then, Yn
D→ Y

as n→∞ iff λTYn
D→ λTY as n→∞ for every λ ∈ Rk.

Proof. Suppose that Yn
D→ Y as n → ∞. Hence, for arbitrary λ ∈

Rk, t ∈ R,

φλTYn(t) = E(exp(itλTYn)) = φYn(tλ)→ φY (tλ) = φλTY (t)

as n→∞, showing λTYn
D→ λTY as n→∞.

If conversely λTYn
D→ λTY as n→∞ for each λ ∈ Rk, then we have

φYn(λ) = E(exp(iλTYn)) = φλTYn(1)→ φλTY (1) = φY (λ)

as n→∞, which provides Yn
D→ Y as n→∞.

Definition 7.2.5. A sequence (Yn)n∈N of real valued random k-vectors,
all defined on some probability space (Ω,A,P), is said to be asymptot-
ically normal with asymptotic mean vector µn and asymptotic covari-
ance matrix Σn, written as Yn ≈ N(µn,Σn), if for all n sufficiently
large λTYn ≈ N(λTµn,λ

TΣnλ) for every λ ∈ Rk,λ 6= 0, and if Σn is
symmetric and positive definite for all these sufficiently large n.
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Lemma 7.2.6. Consider a sequence (Yn)n∈N of real valued random
k-vectors Yn := (Yn1, . . . , Ynk)

T , all defined on some probability space

(Ω,A,P), with corresponding distribution functions Fn. If Yn
D→ c

as n → ∞, where c := (c1, . . . , ck)
T is a constant vector in Rk, then

Yn
P→ c as n→∞.

Proof. In the one-dimensional case k = 1, we have Yn
D→ c as n→∞,

or, respectively, Fn(t) → 1[c,∞)(t) as n → ∞ for all t 6= c. Thereby,
for any ε > 0,

lim
n→∞

P (|Yn − c| ≤ ε) = lim
n→∞

P (c− ε ≤ Yn ≤ c+ ε)

= 1[c,∞)(c+ ε)− 1[c,∞)(c− ε) = 1,

showing Yn
P→ c as n → ∞. For the multidimensional case k > 1,

we obtain Yni
D→ ci as n → ∞ for each i = 1, . . . k by the Cramer

Wold device. Thus, we have k one-dimensional cases, which leads

to Yni
P→ ci as n → ∞ for each i = 1, . . . k, providing Yn

P→ c as
n→∞.

In order to derive weak convergence for a sequence (Xn)n∈N of real
valued random vectors, it is often easier to show the weak convergence
for an approximative sequence (Yn)n∈N. Lemma 7.2.8 will show that

both sequences share the same limit distribution if Yn − Xn
P→ 0

for n → ∞. The following Basic Approximation Theorem uses a
similar strategy, where the approximative sequence is approximated
by a further subsequence.

Theorem 7.2.7. Let (Xn)n∈N, (Ym)m∈N and (Ymn)n∈N for each m ∈
N be sequences of real valued random vectors, all defined on the same
probability space (Ω,A,P), such that

(i) Ymn
D→ Ym as n→∞ for each m,

(ii) Ym
D→ Y as m→∞ and

(iii) limm→∞ lim supn→∞ P{|Xn − Ymn| > ε} = 0 for every ε > 0.

Then, Xn
D→ Y as n→∞.
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Proof. By the Continuity Theorem 7.2.3, we need to show that

|φXn
(t)− φY (t)| → 0 as n→∞

for each t ∈ Rk. The triangle inequality gives

|φXn
(t)− φY (t)| ≤ |φXn

(t)− φYmn(t)|+ |φYmn(t)− φYm(t)|
+ |φYm(t)− φY (t)|, (7.12)

where the first term on the right-hand side satisfies, for δ > 0,

|φXn
(t)− φYmn(t)|

= |E(exp(itTXn)− exp(itTYmn))|
≤ E(| exp(itTXn)(1− exp(itT (Ymn −Xn)))|)
= E(|1− exp(itT (Ymn −Xn))|)
= E(|1− exp(itT (Ymn −Xn))|1(−δ,δ)(|Ymn −Xn|))

+ E(|1− exp(itT (Ymn −Xn))|1(−∞,−δ]∪[δ,∞)(|Ymn −Xn|)). (7.13)

Now, given t ∈ Rk and ε > 0, we choose δ > 0 such that

| exp(itTx)− exp(itTy)| < ε if |x− y| < δ,

which implies

E(|1− exp(itT (Ymn −Xn))|1(−δ,δ)(|Ymn −Xn|)) < ε.

Moreover, we find

|1− exp(itT (Ymn −Xn))| ≤ 2.

This shows the upper boundedness

E(|1− exp(itT (Ymn −Xn))|1(−∞,−δ]∪[δ,∞)(|Ymn −Xn|))
≤ 2P{|Ymn −Xn| ≥ δ}.

Hence, by property (iii), we have

lim sup
n→∞

|φXn
(t)− φYmn(t)| → 0 as m→∞.
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Assumption (ii) guarantees that the last term in (7.12) vanishes as
m → ∞. For any η > 0, we can therefore choose m such that the
upper limits of the first and last term on the right-hand side of (7.12)
are both less than η/2 as n → ∞. For this fixed m, assumption (i)
provides limn→∞ |φYmn(t)− φYm(t)| = 0. Altogether,

lim sup
n→∞

|φXn
(t)− φY (t)| < η/2 + η/2 = η,

which completes the proof, since η was chosen arbitrarily.

Lemma 7.2.8. Consider sequences of real valued random k-vectors
(Yn)n∈N and (Xn)n∈N, all defined on some probability space (Ω,A,P),

such that Yn −Xn
P→ 0 as n→∞. If there exists a random k-vector

Y such that Yn
D→ Y as n→∞, then Xn

D→ Y as n→∞.

Proof. Similar to the proof of Theorem 7.2.7, we find, for arbitrary
t ∈ Rk and ε > 0, a δ > 0 satisfying

|φXn
(t)− φYn(t)| ≤ E(|1− exp(itT (Yn −Xn))|)

< ε+ 2P{|Yn −Xn| ≥ δ}.

Consequently, |φXn
(t)−φYn(t)| → 0 as n→∞. The triangle inequal-

ity then completes the proof

|φXn
(t)− φY (t)| ≤ |φXn

(t)− φYn(t)|+ |φYn(t)− φY (t)|
→ 0 as n→∞.

Lemma 7.2.9. Let (Yn)n∈N be a sequence of real valued random k-

vectors, defined on some probability space (Ω,A,P). If Yn
D→ Y as

n → ∞, then ϑ(Yn)
D→ ϑ(Y ) as n → ∞, where ϑ : Rk → Rm is a

continuous function.

Proof. Since, for fixed t ∈ Rm, φϑ(y)(t) = E(exp(itTϑ(y))),y ∈ Rk,
is a bounded and continuous function of y, Theorem 7.2.2 provides
that φϑ(Yn)(t) = E(exp(itTϑ(Yn))) → E(exp(itTϑ(Y ))) = φϑ(Y )(t) as
n → ∞ for each t. Finally, the Continuity Theorem 7.2.3 completes
the proof.
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Lemma 7.2.10. Consider a sequence of real valued random k-vectors
(Yn)n∈N and a sequence of real valued random m-vectors (Xn)n∈N,
where all random variables are defined on the same probability space

(Ω,A,P). If Yn
D→ Y and Xn

P→ λ as n→∞, where λ is a constant

m-vector, then (Y T
n ,X

T
n )T

D→ (Y T ,λT )T as n→∞.

Proof. Defining Wn := (Y T
n ,λ

T )T , we get Wn
D→ (Y T ,λT )T as well

as Wn− (Y T
n ,X

T
n )T

P→ 0 as n→∞. The assertion follows now from
Lemma 7.2.8.

Lemma 7.2.11. Let (Yn)n∈N and (Xn)n∈N be sequences of random k-
vectors, where all random variables are defined on the same probability

space (Ω,A,P). If Yn
D→ Y and Xn

D→ λ as n → ∞, where λ is a

constant k-vector, then XT
nYn

D→ λTY as n→∞.

Proof. The assertion follows directly from Lemma 7.2.6, 7.2.10 and
7.2.9 by applying the continuous function ϑ : R2k → R, ϑ((xT ,yT )T ) :=
xTy, where x,y ∈ Rk.

Strictly Stationary M-Dependent Sequences
Lemma 7.2.12. Consider the process Yt :=

∑∞
u=−∞ buZt−u, t ∈ Z,

where (bu)u∈Z is an absolutely summable filter of real valued numbers
and where (Zt)t∈Z is a process of square integrable, independent and
identically distributed, real valued random variables with expectation

E(Zt) = µ. Then Ȳn := 1
n

∑n
t=1 Yt

P→ µ
∑∞

u=−∞ bu as n ∈ N, n→∞.

Proof. We approximate Ȳn by

Ynm :=
1

n

n∑
t=1

∑
|u|≤m

buZt−u.

Due to the weak law of large numbers, which provides the conver-

gence in probability 1
n

∑n
t=1 Zt−u

P→ µ as n → ∞, we find Ynm
P→

µ
∑
|u|≤m bu as n → ∞. Defining now Ym := µ

∑
|u|≤m bu, entailing

Ym → µ
∑∞

u=−∞ bu as m→∞, it remains to show that

lim
m→∞

lim sup
n→∞

P{|Ȳn − Ynm| > ε} = 0
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for every ε > 0, since then the assertion follows at once from Theorem
7.2.7 and 7.2.6. Note that Ym and µ

∑∞
u=−∞ bu are constant numbers.

By Markov’s inequality, we attain the required condition

P{|Ȳn − Ynm| > ε} = P
{∣∣∣1
n

n∑
t=1

∑
|u|>m

buZt−u

∣∣∣ > ε
}

≤ 1

ε

∑
|u|>m

|bu|E(|Z1|)→ 0

as m→∞, since |bu| → 0 as u→∞, due to the absolutely summa-
bility of (bu)u∈Z.

Lemma 7.2.13. Consider the process Yt =
∑∞

u=−∞ buZt−u of the pre-
vious Lemma 7.2.12 with E(Zt) = µ = 0 and variance E(Z2

t ) =

σ2 > 0, t ∈ Z. Then, γ̃n(k) := 1
n

∑n
t=1 YtYt+k

P→ γ(k) for k ∈ N
as n ∈ N, n→∞, where γ(k) denotes the autocovariance function of
Yt.

Proof. Simple algebra gives

γ̃n(k) =
1

n

n∑
t=1

YtYt+k =
1

n

n∑
t=1

∞∑
u=−∞

∞∑
w=−∞

bubwZt−uZt−w+k

=
1

n

n∑
t=1

∞∑
u=−∞

bubu+kZ
2
t−u +

1

n

n∑
t=1

∞∑
u=−∞

∑
w 6=u+k

bubwZt−uZt−w+k.

The first term converges in probability to σ2(
∑∞

u=−∞ bubu+k) = γ(k)
by Lemma 7.2.12 and

∑∞
u=−∞ |bubu+k| ≤

∑∞
u=−∞ |bu|

∑∞
w=−∞ |bw+k| <

∞. It remains to show that

Wn :=
1

n

n∑
t=1

∞∑
u=−∞

∑
w 6=u−k

bubwZt−uZt−w+k
P→ 0

as n→∞. We approximate Wn by

Wnm :=
1

n

n∑
t=1

∑
|u|≤m

∑
|w|≤m,w 6=u+k

bubwZt−uZt−w+k.
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and deduce from E(Wnm) = 0,Var(n−1∑n
t=1 Zt−uZt−w+k) = n−1σ4, if

w 6= u+ k, and Chebychev’s inequality,

P{|Wnm| ≥ ε} ≤ ε−2 Var(Wnm)

for every ε > 0, that Wnm
P→ 0 as n→∞. By the Basic Approxima-

tion Theorem 7.2.7, it remains to show that

lim
m→∞

lim sup
n→∞

P{|Wn −Wmn| > ε} = 0

for every ε > 0 in order to establish Wn
P→ 0 as n → ∞. Applying

Markov’s inequality, we attain

P{|Wn −Wnm| > ε} ≤ ε−1 E(|Wn −Wnm|)

≤ (εn)−1
n∑
t=1

∑
|u|>m

∑
|w|>m,w 6=u−k

|bubw|E(|Zt−uZt−w+k|).

This shows

lim
m→∞

lim sup
n→∞

P{|Wn −Wnm| > ε}

≤ lim
m→∞

ε−1
∑
|u|>m

∑
|w|>m,w 6=u−k

|bubw|E(|Z1Z2|) = 0,

since bu → 0 as u→∞.

Definition 7.2.14. A sequence (Yt)t∈Z of square integrable, real val-
ued random variables is said to be strictly stationary if (Y1, . . . , Yk)

T

and (Y1+h, . . . , Yk+h)
T have the same joint distribution for all k > 0

and h ∈ Z.

Observe that strict stationarity implies (weak) stationarity.

Definition 7.2.15. A strictly stationary sequence (Yt)t∈Z of square
integrable, real valued random variables is said to be m-dependent ,
m ≥ 0, if the two sets {Yj|j ≤ k} and {Yi|i ≥ k + m + 1} are
independent for each k ∈ Z.

In the special case of m = 0, m-dependence reduces to independence.
Considering especially a MA(q)-process, we find m = q.
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Theorem 7.2.16. (The Central Limit Theorem For Strictly Station-
ary M-Dependent Sequences) Let (Yt)t∈Z be a strictly stationary se-
quence of square integrable m-dependent real valued random variables
with expectation zero, E(Yt) = 0. Its autocovariance function is de-
noted by γ(k). Now, if Vm := γ(0)+2

∑m
k=1 γ(k) 6= 0, then, for n ∈ N,

(i) limn→∞Var(
√
nȲn) = Vm and

(ii)
√
nȲn

D→ N(0, Vm) as n→∞,
which implies that Ȳn ≈ N(0, Vm/n) for n sufficiently large,

where Ȳn := 1
n

∑n
i=1 Yi.

Proof. We have

Var(
√
nȲn) = nE

((1

n

n∑
i=1

Yi

)(1

n

n∑
j=1

Yj

))
=

1

n

n∑
i=1

n∑
j=1

γ(i− j)

=
1

n

(
2γ(n− 1) + 4γ(n− 2) + · · ·+ 2(n− 1)γ(1) + nγ(0)

)
= γ(0) + 2

n− 1

n
γ(1) + · · ·+ 2

1

n
γ(n− 1)

=
∑

|k|<n,k∈Z

(
1− |k|

n

)
γ(k).

The autocovariance function γ(k) vanishes for k > m, due to the
m-dependence of (Yt)t∈Z. Thus, we get assertion (i),

lim
n→∞

Var(
√
nȲn) = lim

n→∞

∑
|k|<n,k∈Z

(
1− |k|

n

)
γ(k)

=
∑

|k|≤m,k∈Z

γ(k) = Vm.

To prove (ii) we define random variables Ỹ
(p)
i := (Yi+1 + · · ·+Yi+p), i ∈

N0 := N ∪ {0}, as the sum of p, p > m, sequent variables taken from

the sequence (Yt)t∈Z. Each Ỹ
(p)
i has expectation zero and variance

Var(Ỹ
(p)
i ) =

p∑
l=1

p∑
j=1

γ(l − j)

= pγ(0) + 2(p− 1)γ(1) + · · ·+ 2(p−m)γ(m).



7.2 Asymptotic Normality of Partial Autocorrelation Estimator 247

Note that Ỹ
(p)

0 , Ỹ
(p)
p+m, Ỹ

(p)
2(p+m), . . . are independent of each other.

Defining Yrp := Ỹ
(p)

0 + Ỹ
(p)
p+m + · · ·+ Ỹ

(p)
(r−1)(p+m), where r = [n/(p+m)]

denotes the greatest integer less than or equal to n/(p+m), we attain
a sum of r independent, identically distributed and square integrable
random variables. The central limit theorem now provides, as r →∞,

(rVar(Ỹ
(p)

0 ))−1/2Yrp
D→ N(0, 1),

which implies the weak convergence

1√
n
Yrp

D→ Yp as r →∞,

where Yp follows the normal distribution N(0,Var(Ỹ
(p)

0 )/(p + m)).

Note that r →∞ and n→∞ are nested. Since Var(Ỹ
(p)

0 )/(p+m)→
Vm as p → ∞ by the dominated convergence theorem, we attain
moreover

Yp
D→ Y as p→∞,

where Y is N(0, Vm)-distributed. In order to apply Theorem 7.2.7, we
have to show that the condition

lim
p→∞

lim sup
n→∞

P

{∣∣∣∣√nȲn − 1√
n
Yrp

∣∣∣∣ > ε

}
= 0

holds for every ε > 0. The term
√
nȲn− 1√

n
Yrp is a sum of r indepen-

dent random variables

√
nȲn −

1√
n
Yrp =

1√
n

(
r−1∑
i=1

(
Yi(p+m)−m+1 + Yi(p+m)−m+2 + . . .

· · ·+ Yi(p+m)

)
+ (Yr(p+m)−m+1 + · · ·+ Yn)

)
with variance Var(

√
nȲn − 1√

n
Yrp) = 1

n((r − 1) Var(Y1 + · · · + Ym) +

Var(Y1 + · · ·+ Ym+n−r(p+m))). From Chebychev’s inequality, we know

P

{∣∣∣∣√nȲn − 1√
n
Yrp

∣∣∣∣ ≥ ε

}
≤ ε−2 Var

(√
nȲn −

1√
n
Yrp

)
.
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Since the term m+n−r(p+m) is bounded by m ≤ m+n−r(p+m) <
2m + p independent of n, we get lim supn→∞Var(

√
nȲn − 1√

n
Yrp) =

1
p+m Var(Y1 + · · ·+Ym) and can finally deduce the remaining condition

lim
p→∞

lim sup
n→∞

P

{∣∣∣∣√nȲn − 1√
n
Yrp

∣∣∣∣ ≥ ε

}
≤ lim

p→∞

1

(p+m)ε2 Var(Y1 + · · ·+ Ym) = 0.

Hence,
√
nȲn

D→ N(0, Vm) as n→∞.

Example 7.2.17. Let (Yt)t∈Z be the MA(q)-process Yt =
∑q

u=0 buεt−u
satisfying

∑q
u=0 bu 6= 0 and b0 = 1, where the εt are independent,

identically distributed and square integrable random variables with
E(εt) = 0 and Var(εt) = σ2 > 0. Since the process is a q-dependent
strictly stationary sequence with

γ(k) = E

(( q∑
u=0

buεt−u

)( q∑
v=0

bvεt+k−v

))
= σ2

q∑
u=0

bubu+k

for |k| ≤ q, where bw = 0 for w > q, we find Vq := γ(0)+2
∑q

j=1 γ(j) =

σ2(
∑q

j=0 bj)
2 > 0.

Theorem 7.2.16 (ii) then implies that Ȳn ≈ N(0, σ
2

n (
∑q

j=0 bj)
2) for

sufficiently large n.

Theorem 7.2.18. Let Yt =
∑∞

u=−∞ buZt−u, t ∈ Z, be a station-
ary process with absolutely summable real valued filter (bu)u∈Z, where
(Zt)t∈Z is a process of independent, identically distributed, square inte-
grable and real valued random variables with E(Zt) = 0 and Var(Zt) =
σ2 > 0. If

∑∞
u=−∞ bu 6= 0, then, for n ∈ N,

√
nȲn

D→ N
(

0, σ2
( ∞∑
u=−∞

bu

)2)
as n→∞, as well as

Ȳn ≈ N
(

0,
σ2

n

( ∞∑
u=−∞

bu

)2)
for n sufficiently large,

where Ȳn := 1
n

∑n
i=1 Yi.
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Proof. We approximate Yt by Y
(m)
t :=

∑m
u=−m buZt−u and let Ȳ

(m)
n :=

1
n

∑n
t=1 Y

(m)
t . With Theorem 7.2.16 and Example 7.2.17 above, we

attain, as n→∞,

√
nȲ (m)

n
D→ Y (m),

where Y (m) is N(0, σ2(
∑m

u=−m bu)
2)-distributed. Furthermore, since

the filter (bu)u∈Z is absolutely summable
∑∞

u=−∞ |bu| < ∞, we con-
clude by the dominated convergence theorem that, as m→∞,

Y (m) D→ Y, where Y is N
(

0, σ2
( ∞∑
u=−∞

bu

)2)
-distributed.

In order to show Ȳn
D→ Y as n → ∞ by Theorem 7.2.7 and Cheby-

chev’s inequality, we have to proof

lim
m→∞

lim sup
n→∞

Var(
√
n(Ȳn − Ȳ (m)

n )) = 0.

The dominated convergence theorem gives

Var(
√
n(Ȳn − Ȳ (m)

n ))

= nVar
(1

n

n∑
t=1

∑
|u|>m

buZt−u

)
→ σ2

( ∑
|u|>m

bu

)2
as n→∞.

Hence, for every ε > 0, we get

lim
m→∞

lim sup
n→∞

P{|
√
n(Ȳn − Ȳ (m)

n )| ≥ ε}

≤ lim
m→∞

lim sup
n→∞

1

ε2 Var(
√
n(Ȳn − Ȳ (m)

n )) = 0,

since bu → 0 as u→∞, showing that

√
nȲn

D→ N
(

0, σ2
( ∞∑
u=−∞

bu

)2)
as n→∞.
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Asymptotic Normality of Partial Autocorrelation Es-
timator
Recall the empirical autocovariance function c(k) = 1

n

∑n−k
t=1 (yt+k −

ȳ)(yt− ȳ) for a given realization y1, . . . , yn of a process (Yt)t∈Z, where

ȳn = 1
n

∑n
i=1 yi. Hence, ĉn(k) := 1

n

∑n−k
t=1 (Yt+k − Ȳ )(Yt − Ȳ ), where

Ȳn := 1
n

∑n
i=1 Yi, is an obvious estimator of the autocovariance func-

tion at lag k. Consider now a stationary process Yt =
∑∞

u=−∞ buZt−u,
t ∈ Z, with absolutely summable real valued filter (bu)u∈Z, where
(Zt)t∈Z is a process of independent, identically distributed and square
integrable, real valued random variables with E(Zt) = 0 and Var(Zt) =

σ2 > 0. Then, we know from Theorem 7.2.18 that n1/4Ȳn
D→ 0 as

n → ∞, due to the vanishing variance. Lemma 7.2.6 implies that

n1/4Ȳn
P→ 0 as n → ∞ and, consequently, we obtain together with

Lemma 7.2.13

ĉn(k)
P→ γ(k) (7.14)

as n → ∞. Thus, the Yule-Walker equations (7.3) of an AR(p)-
process satisfying above process conditions motivate the following
Yule-Walker estimator

âk,n :=

âk1,n
...

âkk,n

 = Ĉ−1
k,n

ĉn(1)
...

ĉn(k)

 (7.15)

for k ∈ N, where Ĉk,n := (ĉn(|i − j|))1≤i,j≤k denotes an estima-
tion of the autocovariance matrix Σk of k sequent process variables.

ĉn(k)
P→ γ(k) as n → ∞ implies the convergence Ĉk,n

P→ Σk as
n → ∞. Since Σk is regular by Theorem 7.1.1, above estimator
(7.15) is well defined for n sufficiently large. The k-th component of
the Yule-Walker estimator α̂n(k) := âkk,n is the partial autocorrelation
estimator of the partial autocorrelation coefficient α(k). Our aim is
to derive an asymptotic distribution of this partial autocorrelation es-
timator or, respectively, of the corresponding Yule-Walker estimator.
Since the direct derivation from (7.15) is very tedious, we will choose
an approximative estimator.
Consider the AR(p)-process Yt = a1Yt−1 + · · ·+ apYt−p + εt satisfying
the stationarity condition, where the errors εt are independent and
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identically distributed with expectation E(εt) = 0. Since the process,
written in matrix notation

Yn = Xnap +En (7.16)

with Yn := (Y1, Y2, . . . , Yn)
T , En := (ε1, ε2, . . . , εn)

T ∈ Rn, ap :=
(a1, a2, . . . , ap)

T ∈ Rp and n× p-design matrix

Xn =


Y0 Y−1 Y−2 . . . Y1−p
Y1 Y0 Y−1 . . . Y2−p
Y2 Y1 Y0 . . . Y3−p
...

...
...

...
Yn−1 Yn−2 Yn−3 . . . Yn−p

 ,

has the pattern of a regression model, we define

a∗p,n := (XT
nXn)

−1XT
nYn (7.17)

as a possibly appropriate approximation of âp,n. Since, by Lemma
7.2.13,

1

n
(XT

nXn)
P→ Σp as well as

1

n
XT

nYn
P→ (γ(1), . . . , γ(p))T

as n → ∞, where the covariance matrix Σp of p sequent process
variables is regular by Theorem 7.1.1, above estimator (7.17) is well
defined for n sufficiently large. Note that the first convergence in
probability is again a conveniently written form of the entrywise con-
vergence

1

n

n−i∑
k=1−i

YkYk+i−j
P→ γ(i− j)

as n → ∞ of all the (i, j)-elements of 1
n(XT

nXn), i = 1, . . . , n and
j = 1, . . . , p. The next two theorems will now show that there exists
a relationship in the asymptotic behavior of a∗p,n and âp,n.
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Theorem 7.2.19. Suppose (Yt)t∈Z is an AR(p)-process Yt = a1Yt−1 +
· · ·+apYt−p+εt, t ∈ Z, satisfying the stationarity condition, where the
errors εt are independent and identically distributed with expectation
E(εt) = 0 and variance Var(εt) = σ2 > 0. Then,

√
n(a∗p,n − ap)

D→ N(0, σ2Σ−1
p )

as n ∈ N, n → ∞, with a∗p,n := (XT
nXn)

−1XT
nYn and the vector of

coefficients ap = (a1, a2, . . . , ap)
T ∈ Rp.

Accordingly, a∗p,n is asymptotically normal distributed with asymptotic

expectation E(a∗p,n) = ap and asymptotic covariance matrix 1
nσ

2Σ−1
p

for sufficiently large n.

Proof. By (7.16) and (7.17), we have

√
n(a∗p,n − ap) =

√
n
(

(XT
nXn)

−1XT
n (Xnap +En)− ap

)
= n(XT

nXn)
−1(n−1/2XT

nEn).

Lemma 7.2.13 already implies 1
nX

T
nXn

P→ Σp as n → ∞. As Σp is a
matrix of constant elements, it remains to show that

n−1/2XT
nEn

D→ N(0, σ2Σp)

as n → ∞, since then, the assertion follows directly from Lemma
7.2.11. Defining Wt := (Yt−1εt, . . . , Yt−pεt)

T , we can rewrite the term
as

n−1/2XT
nEn = n−1/2

n∑
t=1

Wt.

The considered process (Yt)t∈Z satisfies the stationarity condition. So,
Theorem 2.2.3 provides the almost surely stationary solution Yt =∑

u≥0 buεt−u, t ∈ Z. Consequently, we are able to approximate Yt

by Y
(m)
t :=

∑m
u=0 buεt−u and furthermore Wt by the term W

(m)
t :=

(Y
(m)
t−1 εt, . . . , Y

(m)
t−p εt)

T . Taking an arbitrary vector λ := (λ1, . . . , λp)
T ∈

Rp, λ 6= 0, we gain a strictly stationary (m + p)-dependent sequence
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(R
(m)
t )t∈Z defined by

R
(m)
t := λTW

(m)
t = λ1Y

(m)
t−1 εt + · · ·+ λpY

(m)
t−p εt

= λ1

( m∑
u=0

buεt−u−1

)
εt + λ2

( m∑
u=0

buεt−u−2

)
εt + . . .

+ λp

( m∑
u=0

buεt−u−p

)
εt

with expectation E(R
(m)
t ) = 0 and variance

Var(R
(m)
t ) = λT Var(W

(m)
t )λ = σ2λTΣ(m)

p λ > 0,

where Σ
(m)
p is the regular covariance matrix of (Y

(m)
t−1 , . . . , Y

(m)
t−p )T , due

to Theorem 7.1.1 and b0 = 1. In order to apply Theorem 7.2.16 to the

sequence (R
(m)
t )t∈Z, we have to check if the autocovariance function

of R
(m)
t satisfies the required condition Vm := γ(0) + 2

∑m
k=1 γ(k) 6= 0.

In view of the independence of the errors εt, we obtain, for k 6= 0,

γ(k) = E(R
(m)
t R

(m)
t+k) = 0. Consequently, Vm = γ(0) = Var(R

(m)
t ) > 0

and it follows

n−1/2
n∑
t=1

λTW
(m)
t

D→ N(0, σ2λTΣ(m)
p λ)

as n→∞. Thus, applying the Cramer–Wold device 7.2.4 leads to

n−1/2
n∑
t=1

λTW
(m)
t

D→ λTU (m)

as n→∞, where U (m) is N(0, σ2Σ
(m)
p )-distributed. Since, entrywise,

σ2Σ
(m)
p → σ2Σp as m → ∞, we attain λTU (m) D→ λTU as m → ∞

by the dominated convergence theorem, where U follows the normal
distribution N(0, σ2Σp). With Theorem 7.2.7, it only remains to show
that, for every ε > 0,

lim
m→∞

lim sup
n→∞

P
{∣∣∣ 1√

n

n∑
t=1

λTWt −
1√
n

n∑
t=1

λTW
(m)
t

∣∣∣ > ε
}

= 0
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to establish

1√
n

n∑
t=1

λTWt
D→ λTU

as n → ∞, which, by the Cramer–Wold device 7.2.4, finally leads to
the desired result

1√
n
XT

nEn
D→ N(0, σ2Σp)

as n → ∞. Because of the identically distributed and independent

Wt −W (m)
t , 1 ≤ t ≤ n, we find the variance

Var
( 1√

n

n∑
t=1

λTWt −
1√
n

n∑
t=1

λTW
(m)
t

)
=

1

n
Var

(
λT

n∑
t=1

(Wt −W (m)
t )

)
= λT Var(Wt −W (m)

t )λ

being independent of n. Since almost surely W
(m)
t →Wt as m→∞,

Chebychev’s inequality finally gives

lim
m→∞

lim sup
n→∞

P
{∣∣∣ 1√

n
λT

n∑
t=1

(W
(m)
t −Wt)

∣∣∣ ≥ ε
}

≤ lim
m→∞

1

ε2λ
T Var(Wt −W (m)

t )λ = 0.

Theorem 7.2.20. Consider the AR(p)-process from Theorem 7.2.19.
Then,

√
n(âp,n − ap)

D→ N(0, σ2Σ−1
p )

as n ∈ N, n→∞, where âp,n is the Yule-Walker estimator and ap =
(a1, a2, . . . , ap)

T ∈ Rp is the vector of coefficients.
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Proof. In view of the previous Theorem 7.2.19, it remains to show
that the Yule-Walker estimator âp,n and a∗p,n follow the same limit
law. Therefore, together with Lemma 7.2.8, it suffices to prove that

√
n(âp,n − a∗p,n)

P→ 0

as n→∞. Applying the definitions, we get

√
n(âp,n − a∗p,n) =

√
n(Ĉ−1

p,nĉp,n − (XT
nXn)

−1XT
nYn)

=
√
nĈ−1

p,n(ĉp,n − 1
nX

T
nYn) +

√
n(Ĉ−1

p,n − n(XT
nXn)

−1) 1
nX

T
nYn,

(7.18)

where ĉp,n := (ĉn(1), . . . , ĉn(p))
T . The k-th component of

√
n(ĉp,n −

1
nX

T
nYn) is given by

1√
n

( n−k∑
t=1

(Yt+k − Ȳn)(Yt − Ȳn)−
n−k∑
s=1−k

YsYs+k

)
= − 1√

n

0∑
t=1−k

YtYt+k −
1√
n
Ȳn

( n−k∑
s=1

Ys+k + Ys

)
+
n− k√

n
Ȳ 2
n , (7.19)

where the latter terms can be written as

− 1√
n
Ȳn

( n−k∑
s=1

Ys+k + Ys

)
+
n− k√

n
Ȳ 2
n

= −2
√
nȲ 2

n +
n− k√

n
Ȳ 2
n +

1√
n
Ȳn

( n∑
t=n−k+1

Yt +
k∑
s=1

Ys

)
= −n1/4Ȳnn

1/4Ȳn −
k√
n
Ȳ 2
n +

1√
n
Ȳn

( n∑
t=n−k+1

Yt +
k∑
s=1

Ys

)
. (7.20)

Because of the vanishing variance as n → ∞, Theorem 7.2.18 gives

n1/4Ȳn
D→ 0 as n → ∞, which leads together with Lemma 7.2.6 to

n1/4Ȳn
P→ 0 as n → ∞, showing that (7.20) converges in probability

to zero as n → ∞. Consequently, (7.19) converges in probability to
zero.
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Focusing now on the second term in (7.18), Lemma 7.2.13 implies that

1

n
XT

nYn
P→ γ(p)

as n→∞. Hence, we need to show the convergence in probability

√
n ||Ĉ−1

p,n − n(XT
nXn)

−1|| P→ 0 as n→∞,

where ||Ĉ−1
p,n − n(XT

nXn)
−1|| denotes the Euclidean norm of the p2

dimensional vector consisting of all entries of the p× p-matrix Ĉ−1
p,n−

n(XT
nXn)

−1. Thus, we attain

√
n ||Ĉ−1

p,n − n(XT
nXn)

−1|| (7.21)

=
√
n ||Ĉ−1

p,n(n
−1XT

nXn − Ĉp,n)n(XT
nXn)

−1||
≤
√
n ||Ĉ−1

p,n|| ||n−1XT
nXn − Ĉp,n|| ||n(XT

nXn)
−1||, (7.22)

where

√
n ||n−1XT

nXn − Ĉp,n||2

= n−1/2
p∑
i=1

p∑
j=1

(
n−1/2

n∑
s=1

Ys−iYs−j

− n−1/2
( n−|i−j|∑

t=1

(Yt+|i−j| − Ȳn)(Yt − Ȳn)
))2

.

Regarding (7.19) with k = |i− j|, it only remains to show that

n−1/2
n∑
s=1

Ys−iYs−j − n−1/2
n−k∑
t=1−k

YtYt+k
P→ 0 as n→∞

or, equivalently,

n−1/2
n−i∑
s=1−i

YsYs−j+i − n−1/2
n−k∑
t=1−k

YtYt+k
P→ 0 as n→∞.
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In the case of k = i− j, we find

n−1/2
n−i∑
s=1−i

YsYs−j+i − n−1/2
n−i+j∑
t=1−i+j

YtYt+i−j

= n−1/2
−i+j∑
s=1−i

YsYs−j+i − n−1/2
n−i+j∑
t=n−i+1

YtYt−j+i.

Applied to Markov’s inequality yields

P
{∣∣∣n−1/2

−i+j∑
s=1−i

YsYs−j+i − n−1/2
n−i+j∑
t=n−i+1

YtYt−j+i

∣∣∣ ≥ ε
}

≤ P
{∣∣∣n−1/2

−i+j∑
s=1−i

YsYs−j+i

∣∣∣ ≥ ε/2
}

+ P
{∣∣∣n−1/2

n−i+j∑
t=n−i+1

YtYt−j+i

∣∣∣ ≥ ε/2
}

≤ 4(
√
nε)−1jγ(0)

P→ 0 as n→∞.

In the case of k = j − i, on the other hand,

n−1/2
n−i∑
s=1−i

YsYs−j+i − n−1/2
n−j+i∑
t=1−j+i

YtYt+j−i

= n−1/2
n−i∑
s=1−i

YsYs−j+i − n−1/2
n∑
t=1

Yt+i−jYt

entails that

P
{∣∣∣n−1/2

0∑
s=1−i

YsYs−j+i − n−1/2
n∑

t=n−i+1

Yt+i−jYt

∣∣∣ ≥ ε
}

P→ 0 as n→∞.

This completes the proof, since Ĉ−1
p,n

P→ Σ−1
p as well as n(XT

nXn)
−1 P→

Σ−1
p as n→∞ by Lemma 7.2.13.
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Theorem 7.2.21. : Let (Yt)t∈Z be an AR(p)-process Yt = a1Yt−1 +
· · · + apYt−p + εt, t ∈ Z, satisfying the stationarity condition, where
(εt)t∈Z is a white noise process of independent and identically dis-
tributed random variables with expectation E(εt) = 0 and variance
E(ε2

t ) = σ2 > 0. Then the partial autocorrelation estimator α̂n(k) of
order k > p based on Y1, . . . , Yn, is asymptotically normal distributed
with expectation E(α̂n(k)) = 0 and variance E(α̂n(k)2) = 1/n for suf-
ficiently large n ∈ N.

Proof. The AR(p)-process can be regarded as an AR(k)-process Ỹt :=
a1Yt−1 + · · · + akYt−k + εt with k > p and ai = 0 for p < i ≤ k. The
partial autocorrelation estimator α̂n(k) is the k-th component âkk,n of
the Yule-Walker estimator âk,n. Defining

(σij)1≤i,j≤k := Σ−1
k

as the inverse matrix of the covariance matrix Σk of k sequent process
variables, Theorem 7.2.20 provides the asymptotic behavior

α̂n(k) ≈ N
(
ak,

σ2

n
σkk

)
for n sufficiently large. We obtain from Lemma 7.1.5 with y := Yk
and x := (Y1, . . . , Yk−1) that

σkk = V −1
yy,x =

1

Var(Yk − Ŷk,k−1)
,

since y and so Vyy,x have dimension one. As (Yt)t∈Z is an AR(p)-
process satisfying the Yule-Walker equations, the best linear approxi-
mation is given by Ŷk,k−1 =

∑p
u=1 auYk−u and, therefore, Yk− Ŷk,k−1 =

εk. Thus, for k > p

α̂n(k) ≈ N
(

0,
1

n

)
.
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7.3 Asymptotic Normality of Autocorrela-
tion Estimator

The Landau-Symbols
A sequence (Yn)n∈N of real valued random variables, defined on some
probability space (Ω,A,P), is said to be bounded in probability (or
tight), if, for every ε > 0, there exists δ > 0 such that

P{|Yn| > δ} < ε

for all n, conveniently notated as Yn = OP (1). Given a sequence
(hn)n∈N of positive real valued numbers we define moreover

Yn = OP (hn)

if and only if Yn/hn is bounded in probability and

Yn = oP (hn)

if and only if Yn/hn converges in probability to zero. A sequence
(Yn)n∈N,Yn := (Yn1, . . . , Ynk), of real valued random vectors, all de-
fined on some probability space (Ω,A,P), is said to be bounded in
probability

Yn = OP (hn)

if and only if Yni/hn is bounded in probability for every i = 1, . . . , k.
Furthermore,

Yn = oP (hn)

if and only if Yni/hn converges in probability to zero for every i =
1, . . . , k.
The next four Lemmas will show basic properties concerning these
Landau-symbols.

Lemma 7.3.1. Consider two sequences (Yn)n∈N and (Xn)n∈N of real
valued random k-vectors, all defined on the same probability space
(Ω,A,P), such that Yn = OP (1) and Xn = oP (1). Then, YnXn =
oP (1).
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Proof. Let Yn := (Yn1, . . . , Ynk)
T and Xn := (Xn1, . . . , Xnk)

T . For any
fixed i ∈ {1, . . . , k}, arbitrary ε > 0 and δ > 0, we have

P{|YniXni| > ε} = P{|YniXni| > ε ∩ |Yni| > δ}
+ P{|YniXni| > ε ∩ |Yni| ≤ δ}
≤ P{|Yni| > δ}+ P{|Xni| > ε/δ}.

As Yni = OP (1), for arbitrary η > 0, there exists κ > 0 such that
P{|Yni| > κ} < η for all n ∈ N. Choosing δ := κ, we finally attain

lim
n→∞

P{|YniXni| > ε} = 0,

since η was chosen arbitrarily.

Lemma 7.3.2. Consider a sequence of real valued random k-vectors
(Yn)n∈N, where all Yn := (Yn1, . . . , Ynk)

T are defined on the same prob-
ability space (Ω,A,P). If Yn = OP (hn), where hn → 0 as n → ∞,
then Yn = oP (1).

Proof. For any fixed i ∈ {1, . . . , k}, we have Yni/hn = OP (1). Thus,
for every ε > 0, there exists δ > 0 with P{|Yni/hn| > δ} = P{|Yni| >
δ|hn|} < ε for all n. Now, for arbitrary η > 0, there exits N ∈ N such
that δ|hn| ≤ η for all n ≥ N . Hence, we have P{|Yni| > η} → 0 as
n→∞ for all η > 0.

Lemma 7.3.3. Let Y be a random variable on (Ω,A,P) with cor-
responding distribution function F and (Yn)n∈N is supposed to be a
sequence of random variables on (Ω,A,P) with corresponding distri-

bution functions Fn such that Yn
D→ Y as n→∞. Then, Yn = OP (1).

Proof. Let ε > 0. Due to the right-continuousness of distribution
functions, we always find continuity points t1 and −t1 of F satisfying
F (t1) > 1 − ε/4 and F (−t1) < ε/4. Moreover, there exists N1 such
that |Fn(t1)− F (t1)| < ε/4 for n ≥ N1, entailing Fn(t1) > 1− ε/2 for
n ≥ N1. Analogously, we find N2 such that Fn(−t1) < ε/2 for n ≥ N2.
Consequently, P{|Yn| > t1} < ε for n ≥ max{N1, N2}. Since we
always find a continuity point t2 of F with maxn<max{N1,N2}{P{|Yn| >
t2}} < ε, the boundedness follows: P (|Yn| > t) < ε for all n, where
t := max{t1, t2}.
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Lemma 7.3.4. Consider two sequences (Yn)n∈N and (Xn)n∈N of real
valued random k-vectors, all defined on the same probability space

(Ω,A,P), such that Yn −Xn = oP (1). If furthermore Yn
P→ Y as

n→∞, then Xn
P→ Y as n→∞.

Proof. The triangle inequality immediately provides

|Xn − Y | ≤ |Xn − Yn|+ |Yn − Y | → 0 as n→∞.

Note that Yn−Y = oP (1)⇔ |Yn−Y | = oP (1), due to the Euclidean
distance.

Taylor Series Expansion in Probability
Lemma 7.3.5. Let (Yn)n∈N,Yn := (Yn1, . . . , Ynk), be a sequence of
real valued random k-vectors, all defined on the same probability space

(Ω,A,P), and let c be a constant vector in Rk such that Yn
P→ c as

n → ∞. If the function ϑ : Rk → Rm is continuous at c, then

ϑ(Yn)
P→ ϑ(c) as n→∞.

Proof. Let ε > 0. Since ϑ is continuous at c, there exists δ > 0 such
that, for all n,

{|Yn − c| < δ} ⊆ {|ϑ(Yn)− ϑ(c)| < ε},

which implies

P{|ϑ(Yn)− ϑ(c)| > ε} ≤ P{|Yn − c| > δ/2} → 0 as n→∞.

If we assume in addition the existence of the partial derivatives of ϑ
in a neighborhood of c, we attain a stochastic analogue of the Taylor
series expansion.

Theorem 7.3.6. Let (Yn)n∈N,Yn := (Yn1, . . . , Ynk), be a sequence of
real valued random k-vectors, all defined on the same probability space
(Ω,A,P), and let c := (c1, . . . , ck)

T be an arbitrary constant vector in
Rk such that Yn − c = OP (hn), where hn → 0 as n → ∞. If the



262 The Box–Jenkins Program: A Case Study

function ϑ : Rk → R, y → ϑ(y), has continuous partial derivatives
∂ϑ
∂yi
, i = 1, . . . , k, in a neighborhood of c, then

ϑ(Yn) = ϑ(c) +
k∑
i=1

∂ϑ

∂yi
(c)(Yni − ci) + oP (hn).

Proof. The Taylor series expansion (e.g. Seeley, 1970, Section 5.3)
gives, as y → c,

ϑ(y) = ϑ(c) +
k∑
i=1

∂ϑ

∂yi
(c)(yi − ci) + o(|y − c|),

where y := (y1, . . . , yk)
T . Defining

ϕ(y) : =
1

|y − c|

(
ϑ(y)− ϑ(c)−

k∑
i=1

∂ϑ

∂yi
(c)(yi − ci)

)
=
o(|y − c|)
|y − c|

for y 6= c and ϕ(c) = 0, we attain a function ϕ : Rk → R that is
continuous at c. Since Yn − c = OP (hn), where hn → 0 as n → ∞,
Lemma 7.3.2 and the definition of stochastically boundedness directly

imply Yn
P→ c. Together with Lemma 7.3.5, we receive therefore

ϕ(Yn)
P→ ϕ(c) = 0 as n → ∞. Finally, from Lemma 7.3.1 and

Exercise 7.1, the assertion follows: ϕ(Yn)|Yn − c| = oP (hn).

The Delta-Method
Theorem 7.3.7. (The Multivariate Delta-Method) Consider a se-
quence of real valued random k-vectors (Yn)n∈N, all defined on the

same probability space (Ω,A,P), such that h−1
n (Yn − µ)

D→ N(0,Σ)
as n → ∞ with µ := (µ, . . . , µ)T ∈ Rk, hn → 0 as n → ∞ and
Σ := (σrs)1≤r,s≤k being a symmetric and positive definite k×k-matrix.
Moreover, let ϑ = (ϑ1, . . . , ϑm)T : y → ϑ(y) be a function from Rk

into Rm,m ≤ k, where each ϑj, 1 ≤ j ≤ m, is continuously differen-
tiable in a neighborhood of µ. If

∆ :=
(∂ϑj
∂yi

(y)
∣∣∣
µ

)
1≤j≤m,1≤i≤k
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is a m× k-matrix with rank(∆) = m, then

h−1
n (ϑ(Yn)− ϑ(µ))

D→ N(0,∆Σ∆T )

as n→∞.

Proof. By Lemma 7.3.3, Yn − µ = OP (hn). Hence, the conditions of
Theorem 7.3.6 are satisfied and we receive

ϑj(Yn) = ϑj(µ) +
k∑
i=1

∂ϑj
∂yi

(µ)(Yni − µi) + oP (hn)

for j = 1, . . . ,m. Conveniently written in matrix notation yields

ϑ(Yn)− ϑ(µ) = ∆(Yn − µ) + oP (hn)

or, respectively,

h−1
n (ϑ(Yn)− ϑ(µ)) = h−1

n ∆(Yn − µ) + oP (1).

We know h−1
n ∆(Yn − µ)

D→ N(0,∆Σ∆T ) as n → ∞, thus, we con-

clude from Lemma 7.2.8 that h−1
n (ϑ(Yn)− ϑ(µ))

D→ N(0,∆Σ∆T ) as
n→∞ as well.

Asymptotic Normality of Autocorrelation Estimator
Since ĉn(k) = 1

n

∑n−k
t=1 (Yt+k − Ȳ )(Yt − Ȳ ) is an estimator of the auto-

covariance γ(k) at lag k ∈ N, r̂n(k) := ĉn(k)/ĉn(0), ĉn(0) 6= 0, is an
obvious estimator of the autocorrelation ρ(k). As the direct deriva-
tion of an asymptotic distribution of ĉn(k) or r̂n(k) is a complex prob-
lem, we consider another estimator of γ(k). Lemma 7.2.13 motivates
γ̃n(k) := 1

n

∑n
t=1 YtYt+k as an appropriate candidate.

Lemma 7.3.8. Consider the stationary process Yt =
∑∞

u=−∞ buεt−u,
where the filter (bu)u∈Z is absolutely summable and (εt)t∈Z is a white
noise process of independent and identically distributed random vari-
ables with expectation E(εt) = 0 and variance E(ε2

t ) = σ2 > 0. If
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E(ε4
t ) := ασ4 <∞, α > 0, then, for l ≥ 0, k ≥ 0 and n ∈ N,

lim
n→∞

nCov(γ̃n(k), γ̃n(l))

= (α− 3)γ(k)γ(l)

+
∞∑

m=−∞

(
γ(m+ l)γ(m− k) + γ(m+ l − k)γ(m)

)
,

where γ̃n(k) = 1
n

∑n
t=1 YtYt+k.

Proof. The autocovariance function of (Yt)t∈Z is given by

γ(k) = E(YtYt+k) =
∞∑

u=−∞

∞∑
w=−∞

bubw E(εt−uεt+k−w)

= σ2
∞∑

u=−∞
bubu+k.

Observe that

E(εgεhεiεj) =


ασ4 if g = h = i = j,

σ4 if g = h 6= i = j, g = i 6= h = j, g = j 6= h = i,

0 elsewhere.

We therefore find

E(YtYt+sYt+s+rYt+s+r+v)

=
∞∑

g=−∞

∞∑
h=−∞

∞∑
i=−∞

∞∑
j=−∞

bgbh+sbi+s+rbj+s+r+v E(εt−gεt−hεt−iεt−j)

= σ4
∞∑

g=−∞

∞∑
i=−∞

(bgbg+sbi+s+rbi+s+r+v + bgbg+s+rbi+sbi+s+r+v

+ bgbg+s+r+vbi+sbi+s+r)

+ (α− 3)σ4
∞∑

j=−∞
bjbj+sbj+s+rbj+s+r+v

= (α− 3)σ4
∞∑

g=−∞
bgbg+sbg+s+rbg+s+r+v

+ γ(s)γ(v) + γ(r + s)γ(r + v) + γ(r + s+ v)γ(r).



7.3 Asymptotic Normality of Autocorrelation Estimator 265

Applying the result to the covariance of γ̃n(k) and γ̃n(l) provides

Cov(γ̃n(k), γ̃n(l))

= E(γ̃n(k)γ̃n(l))− E(γ̃n(k)) E(γ̃n(l))

=
1

n2 E

(
n∑
s=1

YsYs+k

n∑
t=1

YtYt+l

)
− γ(l)γ(k)

=
1

n2

n∑
s=1

n∑
t=1

(
γ(t− s)γ(t− s− k + l)

+ γ(t− s+ l)γ(t− s− k) + γ(k)γ(l)

+ (α− 3)σ4
∞∑

g=−∞
bgbg+kbg+t−sbg+t−s+l

)
− γ(l)γ(k). (7.23)

Since the two indices t and s occur as linear combination t − s, we
can apply the following useful form

n∑
s=1

n∑
t=1

Ct−s = nC0 + (n− 1)C1 + (n− 2)C2 · · ·+ Cn−1

+ (n− 1)C−1 + (n− 2)C−2 · · ·+ C1−n

=
∑
|m|≤n

(n− |m|)Cm.

Defining

Ct−s := γ(t− s)γ(t− s− k + l) + γ(t− s+ l)γ(t− s− k)

+ (α− 3)σ4
∞∑

g=−∞
bgbg+kbg+t−sbg+t−s+l,

we can conveniently rewrite the above covariance (7.23) as

Cov(γ̃n(k), γ̃n(l)) =
1

n2

n∑
s=1

n∑
t=1

Ct−s =
1

n2

∑
|m|≤n

(n− |m|)Cm.

The absolutely summable filter (bu)u∈Z entails the absolute summa-
bility of the sequence (Cm)m∈Z. Hence, by the dominated convergence
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theorem, it finally follows

lim
n→∞

nCov(γ̃n(k), γ̃n(l)) =
∞∑

m=−∞
Cm

=
∞∑

m=−∞

(
γ(m)γ(m− k + l) + γ(m+ l)γ(m− k)

+ (α− 3)σ4
∞∑

g=−∞
bgbg+kbg+mbg+m+l

)
= (α− 3)γ(k)γ(l) +

∞∑
m=−∞

(
γ(m)γ(m− k + l) + γ(m+ l)γ(m− k)

)
.

Lemma 7.3.9. Consider the stationary process (Yt)t∈Z from the previ-
ous Lemma 7.3.8 satisfying E(ε4

t ) := ασ4 <∞, α > 0, b0 = 1 and bu =
0 for u < 0. Let γ̃p,n := (γ̃n(0), . . . , γ̃n(p))

T ,γp := (γ(0), . . . , γ(p))T

for p ≥ 0, n ∈ N, and let the p × p-matrix Σc := (ckl)0≤k,l≤p be given
by

ckl := (α− 3)γ(k)γ(l)

+
∞∑

m=−∞

(
γ(m)γ(m− k + l) + γ(m+ l)γ(m− k)

)
.

Furthermore, consider the MA(q)-process Y
(q)
t :=

∑q
u=0 buεt−u, q ∈

N, t ∈ Z, with corresponding autocovariance function γ(k)(q) and the

p× p-matrix Σ
(q)
c := (c

(q)
kl )0≤k,l≤p with elements

c
(q)
kl :=(α− 3)γ(k)(q)γ(l)(q)

+
∞∑

m=−∞

(
γ(m)(q)γ(m− k + l)(q) + γ(m+ l)(q)γ(m− k)(q)

)
.

Then, if Σc and Σ
(q)
c are regular,

√
n(γ̃p,n − γp)

D→ N(0,Σc),

as n→∞.
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Proof. Consider the MA(q)-process Y
(q)
t :=

∑q
u=0 buεt−u, q ∈ N, t ∈

Z, with corresponding autocovariance function γ(k)(q). We define

γ̃n(k)(q) := 1
n

∑n
t=1 Y

(q)
t Y

(q)
t+k as well as γ̃

(q)
p,n := (γ̃n(0)(q), . . . , γ̃n(p)

(q))T .
Defining moreover

Y
(q)
t := (Y

(q)
t Y

(q)
t , Y

(q)
t Y

(q)
t+1, . . . , Y

(q)
t Y

(q)
t+p)

T , t ∈ Z,

we attain a strictly stationary (q+p)-dependence sequence (λTY
(q)
t )t∈Z

for any λ := (λ1, . . . , λp+1)
T ∈ Rp+1,λ 6= 0. Since

1

n

n∑
t=1

Y
(q)
t = γ̃(q)

p,n,

the previous Lemma 7.3.8 gives

lim
n→∞

nVar
(1

n

n∑
t=1

λTY
(q)
t

)
= λTΣ(q)

c λ > 0.

Now, we can apply Theorem 7.2.16 and receive

n−1/2
n∑
t=1

λTY
(q)
t − n1/2λTγ(q)

p
D→ N(0,λTΣ(q)

c λ)

as n → ∞, where γ
(q)
p := (γ(0)(q), . . . , γ(p)(q))T . Since, entrywise,

Σ
(q)
c → Σc as q →∞, the dominated convergence theorem gives

n−1/2
n∑
t=1

λTYt − n1/2λTγp
D→ N(0,λTΣcλ)

as n→∞. The Cramer–Wold device then provides

√
n(γ̃p,n − γp)

D→ Y

as n → ∞, where Y is N(0,Σc)-distributed. Recalling once more
Theorem 7.2.7, it remains to show

lim
q→∞

lim sup
n→∞

P{
√
n|γ̃n(k)(q) − γ(k)(q) − γ̃n(k) + γ(k)| > ε} = 0

(7.24)
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for every ε > 0 and k = 0, . . . , p. We attain, by Chebychev’s inequal-
ity,

P{
√
n|γ̃n(k)(q) − γ(k)(q) − γ̃n(k) + γ(k)| ≥ ε}

≤ n

ε2 Var(γ̃n(k)(q) − γ̃n(k))

=
1

ε2

(
nVar(γ̃n(k))(q) + nVar(γ̃n(k))− 2nCov(γ̃n(k)(q)γ̃n(k))

)
.

By the dominated convergence theorem and Lemma 7.3.8, the first
term satisfies

lim
q→∞

lim
n→∞

nVar(γ̃n(k)(q)) = lim
n→∞

nVar(γ̃n(k)) = ckk,

the last one

lim
q→∞

lim
n→∞

2nCov(γ̃n(k)(q)γ̃(k)) = 2ckk,

showing altogether (7.24).

Lemma 7.3.10. Consider the stationary process and the notations

from Lemma 7.3.9, where the matrices Σc and Σ
(q)
c are assumed to

be positive definite. Let ĉn(s) = 1
n

∑n−k
t=1 (Yt+s − Ȳ )(Yt − Ȳ ), with

Ȳ = 1
n

∑n
t=1 Yt, denote the autocovariance estimator at lag s ∈ N.

Then, for p ≥ 0,

√
n(ĉp,n − γp)

D→ N(0,Σc)

as n→∞, where ĉp,n := (ĉn(0), . . . , ĉn(p))
T .

Proof. In view of Lemma 7.3.9, it suffices to show that
√
n(ĉn(k) −

γ̃n(k))
P→ 0 as n → ∞ for k = 0, . . . , p, since then Lemma 7.2.8

provides the assertion. We have

√
n(ĉn(k)− γ̃n(k)) =

√
n
(1

n

n−k∑
t=1

(Yt+k − Ȳ )(Yt − Ȳ )− 1

n

n∑
t=1

YtYt+k

)
=
√
nȲ
(n− k

n
Ȳ − 1

n

n−k∑
t=1

(Yt+k + Yt)
)
− 1√

n

n∑
t=n−k+1

Yt+kYt.
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We know from Theorem 7.2.18 that either
√
nȲ

P→ 0, if
∑∞

u=0 bu = 0
or

√
nȲ

D→ N
(

0, σ2
( ∞∑
u=0

bu

)2)
as n→∞, if

∑∞
u=0 bu 6= 0. This entails the boundedness in probability√

nȲ = OP (1) by Lemma 7.3.3. By Markov’s inequality, it follows,
for every ε > 0,

P
{∣∣∣ 1√

n

n∑
t=n−k+1

Yt+kYt

∣∣∣ ≥ ε
}
≤ 1

ε
E
(∣∣∣ 1√

n

n∑
t=n−k+1

Yt+kYt

∣∣∣)
≤ k

ε
√
n
γ(0)→ 0 as n→∞,

which shows that n−1/2∑n
t=n−k+1 Yt+kYt

P→ 0 as n → ∞. Applying
Lemma 7.2.12 leads to

n− k
n

Ȳ − 1

n

n−k∑
t=1

(Yt+k + Yt)
P→ 0 as n→∞.

The required condition

√
n(ĉn(k)− γ̃n(k))

P→ 0 as n→∞

is then attained by Lemma 7.3.1.

Theorem 7.3.11. Consider the stationary process and the notations

from Lemma 7.3.10, where the matrices Σc and Σ
(q)
c are assumed

to be positive definite. Let ρ(k) be the autocorrelation function of
(Yt)t∈Z and ρp := (ρ(1), . . . , ρ(p))T the autocorrelation vector in Rp.
Let furthermore r̂n(k) := ĉn(k)/ĉn(0) be the autocorrelation estimator
of the process for sufficiently large n with corresponding estimator
vector r̂p,n := (r̂n(1), . . . , r̂n(p))

T , p > 0. Then, for sufficiently large
n,

√
n(r̂p,n − ρp)

D→ N(0,Σr)
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as n→∞, where Σr is the covariance matrix (rij)1≤i,j≤p with entries

rij =
∞∑

m=−∞

(
2ρ(m)

(
ρ(i)ρ(j)ρ(m)− ρ(i)ρ(m+ j)

− ρ(j)ρ(m+ i)
)

+ ρ(m+ j)
(
ρ(m+ i) + ρ(m− i)

))
. (7.25)

Proof. Note that r̂n(k) is well defined for sufficiently large n since

ĉn(0)
P→ γ(0) = σ2∑∞

u=−∞ b
2
u > 0 as n → ∞ by (7.14). Let ϑ be

the function defined by ϑ((x0, x1, . . . , xp)
T ) = (x1

x0
, x2

x0
, . . . ,

xp
x0

)T , where

xs ∈ R for s ∈ {0, . . . , p} and x0 6= 0. The multivariate delta-method
7.3.7 and Lemma 7.3.10 show that

√
n

ϑ
ĉn(0)

...
ĉn(p)

− ϑ
γ(0)

...
γ(p)

 =
√
n(r̂p,n − ρp)

D→ N
(
0,∆Σc∆

T
)

as n→∞, where the p× p+ 1-matrix ∆ is given by the block matrix

(δij)1≤i≤p,0≤j≤p := ∆ =
1

γ(0)

(
−ρp Ip

)
with p× p-identity matrix Ip.
The (i, j)-element rij of Σr := ∆Σc∆

T satisfies
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rij =

p∑
k=0

δik

p∑
l=0

cklδjl

=
1

γ(0)2

(
− ρ(i)

p∑
l=0

(c0lδjl + cilδjl)
)

=
1

γ(0)2

(
ρ(i)ρ(j)c00 − ρ(i)c0j − ρ(j)c10 + c11

)
= ρ(i)ρ(j)

(
(α− 3) +

∞∑
m=−∞

2ρ(m)2
)

− ρ(i)
(

(α− 3)ρ(j) +
∞∑

m′=−∞

2ρ(m′)ρ(m′ + j)
)

− ρ(j)
(

(α− 3)ρ(i) +
∞∑

m∗=−∞
2ρ(m∗)ρ(m∗ − i)

)
+ (α− 3)ρ(i)ρ(j)

+
∞∑

m°=−∞

(
ρ(m°)ρ(m°− i+ j) + ρ(m° + j)ρ(m°− i)

)
=

∞∑
m=−∞

(
2ρ(i)ρ(j)ρ(m)2 − 2ρ(i)ρ(m)ρ(m+ j)

− 2ρ(j)ρ(m)ρ(m− i) + ρ(m)ρ(m− i+ j) + ρ(m+ j)ρ(m− i)
)
.

(7.26)

We may write

∞∑
m=−∞

ρ(j)ρ(m)ρ(m− i) =
∞∑

m=−∞
ρ(j)ρ(m+ i)ρ(m)

as well as

∞∑
m=−∞

ρ(m)ρ(m− i+ j) =
∞∑

m=−∞
ρ(m+ i)ρ(m+ j). (7.27)

Now, applied to (7.26) yields the representation (7.25).
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The representation (7.25) is the so-called Bartlett’s formula, which
can be more conveniently written as

rij =
∞∑
m=1

(
ρ(m+ i) + ρ(m− i)− 2ρ(i)ρ(m)

)
·
(
ρ(m+ j) + ρ(m− j)− 2ρ(j)ρ(m)

)
(7.28)

using (7.27).

Remark 7.3.12. The derived distributions in the previous Lemmata
and Theorems remain valid even without the assumption of regular

matrices Σ
(q)
c and Σc (Brockwell and Davis, 2002, Section 7.2 and

7.3). Hence, we may use above formula for ARMA(p, q)-processes
that satisfy the process conditions of Lemma 7.3.9.

7.4 First Examinations
The Box–Jenkins program was introduced in Section 2.3 and deals
with the problem of selecting an invertible and zero-mean ARMA(p, q)-
model that satisfies the stationary condition and Var(Yt) > 0 for
the purpose of appropriately explaining, estimating and forecasting
univariate time series. In general, the original time series has to
be prepared in order to represent a possible realization of such an
ARMA(p, q)-model satisfying above conditions. Given an adequate
ARMA(p, q)-model, forecasts of the original time series can be at-
tained by reversing the applied modifications.
In the following sections, we will apply the program to the Donauwo-
erth time series y1, . . . , yn.
First, we have to check, whether there is need to eliminate an occur-
ring trend, seasonal influence or spread variation over time. Also, in
general, a mean correction is necessary in order to attain a zero-mean
time series. The following plots of the time series and empirical auto-
correlation as well as the periodogram of the time series provide first
indications.
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The MEANS Procedure

Analysis Variable : discharge

N Mean Std Dev Minimum Maximum
--------------------------------------------------------------------
7300 201.5951932 117.6864736 54.0590000 1216.09
--------------------------------------------------------------------

Listing 7.4.1: Summary statistics of the original Donauwoerth Data.

Plot 7.4.1b: Plot of the original Donauwoerth Data.
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Plot 7.4.1c: Empirical autocorrelation function of original Donauwo-
erth Data.

Plot 7.4.1d: Periodogram of the original Donauwoerth Data.

PERIOD COS_01 SIN_01 p lambda

365.00 7.1096 51.1112 4859796.14 .002739726
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2433.33 -37.4101 20.4289 3315765.43 .000410959
456.25 -1.0611 25.8759 1224005.98 .002191781

Listing 7.4.1e: Greatest periods inherent in the original Donauwoerth
Data.

1 /* donauwoerth_firstanalysis.sas */
2 TITLE1 ’First Analysis’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Read in data set */
6 DATA donau;
7 INFILE ’/scratch/perm/stat/daten/donauwoerth.txt’;
8 INPUT day month year discharge;
9 date=MDY(month, day, year);

10 FORMAT date mmddyy10.;
11

12 /* Compute mean */
13 PROC MEANS DATA=donau;
14 VAR discharge;
15 RUN;
16

17 /* Graphical options */
18 SYMBOL1 V=DOT I=JOIN C=GREEN H=0.3 W=1;
19 AXIS1 LABEL=(ANGLE=90 ’Discharge’);
20 AXIS2 LABEL=(’January 1985 to December 2004’) ORDER=(’01JAN85’d ’01

↪→JAN89’d ’01JAN93’d ’01JAN97’d ’01JAN01’d ’01JAN05’d);
21 AXIS3 LABEL=(ANGLE=90 ’Autocorrelation’);
22 AXIS4 LABEL=(’Lag’) ORDER = (0 1000 2000 3000 4000 5000 6000 7000);
23 AXIS5 LABEL=(’I(’ F=CGREEK ’l)’);
24 AXIS6 LABEL=(F=CGREEK ’l’);
25

26 /* Generate data plot */
27 PROC GPLOT DATA=donau;
28 PLOT discharge*date=1 / VREF=201.6 VAXIS=AXIS1 HAXIS=AXIS2;
29 RUN;
30

31 /* Compute and plot empirical autocorrelation */
32 PROC ARIMA DATA=donau;
33 IDENTIFY VAR=discharge NLAG=7000 OUTCOV=autocorr NOPRINT;
34 PROC GPLOT DATA=autocorr;
35 PLOT corr*lag=1 /VAXIS=AXIS3 HAXIS=AXIS4 VREF=0;
36 RUN;
37

38 /* Compute periodogram */
39 PROC SPECTRA DATA=donau COEF P OUT=data1;
40 VAR discharge;
41

42 /* Adjusting different periodogram definitions */
43 DATA data2;
44 SET data1(FIRSTOBS=2);
45 p=P_01/2;
46 lambda=FREQ/(2*CoNSTANT(’PI’));
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47 DROP P_01 FREQ;
48

49 /* Plot periodogram */
50 PROC GPLOT DATA=data2(OBS=100);
51 PLOT p*lambda=1 / VAXIS=AXIS5 HAXIS=AXIS6;
52 RUN;
53

54 /* Print three largest periodogram values */
55 PROC SORT DATA=data2 OUT=data3; BY DESCENDING p;
56 PROC PRINT DATA=data3(OBS=3) NOOBS;
57 RUN; QUIT;

In the DATA step the observed measurements
of discharge as well as the dates of observa-
tions are read from the external file ’donau-
woerth.txt’ and written into corresponding vari-
ables day, month, year and discharge.
The MDJ function together with the FORMAT
statement then creates a variable date con-
sisting of month, day and year. The raw dis-
charge values are plotted by the procedure
PROC GPLOT with respect to date in order to
obtain a first impression of the data. The op-
tion VREF creates a horizontal line at 201.6,

indicating the arithmetic mean of the variable
discharge, which was computed by PROC
MEANS. Next, PROC ARIMA computes the em-
pirical autocorrelations up to a lag of 7000 and
PROC SPECTRA computes the periodogram of
the variable discharge as described in the
previous chapters. The corresponding plots are
again created with PROC GPLOT. Finally, PROC
SORT sorts the values of the periodogram in de-
creasing order and the three largest ones are
printed by PROC PRINT, due to option OBS=3.

The plot of the original Donauwoerth time series indicate no trend,
but the plot of the empirical autocorrelation function indicate seasonal
variations. The periodogram shows a strong influence of the Fourier
frequencies 0.00274 ≈ 1/365 and 0.000411 ≈ 1/2433, indicating cycles
with period 365 and 2433.
Carrying out a seasonal and mean adjustment as presented in Chap-
ter 1 leads to an apparently stationary shape, as we can see in the
following plots of the adjusted time series, empirical autocorrelation
function and periodogram. Furthermore, the variation of the data
seems to be independent of time. Hence, there is no need to apply
variance stabilizing methods.
Next, we execute Dickey–Fuller’s test for stationarity as introduced in
Section 2.2. Since we assume an invertible ARMA(p, q)-process, we
approximated it by high-ordered autoregressive models with orders of
7, 8 and 9. Under the three model assumptions 2.18, 2.19 and 2.20,
the test of Dickey-Fuller finally provides significantly small p-values
for each considered case, cf. Listing 7.4.2d. Accordingly, we have no
reason to doubt that the adjusted zero-mean time series, which will
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henceforth be denoted by ỹ1, . . . , ỹn, can be interpreted as a realization
of a stationary ARMA(p, q)-process.
Simultaneously, we tested, if the adjusted time series can be regarded
as an outcome of a white noise process. Then there would be no
need to fit a model at all. The plot of the empirical autocorrelation
function 7.4.2b clearly rejects this assumption. A more formal test for
white noise can be executed, using for example the Portmanteau-test
of Box–Ljung, cf. Section 7.6.

The MEANS Procedure

Analysis Variable : discharge

N Mean Std Dev Minimum Maximum
--------------------------------------------------------------------
7300 201.5951932 117.6864736 54.0590000 1216.09
--------------------------------------------------------------------

Listing 7.4.2: Summary statistics of the adjusted Donauwoerth Data.

Plot 7.4.2b: Plot of the adjusted Donauwoerth Data.
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Plot 7.4.2c: Empirical autocorrelation function of adjusted Donauwo-
erth Data.

Plot 7.4.2d: Periodogram of adjusted Donauwoerth Data.

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F
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Zero Mean 7 -69.1526 <.0001 -5.79 <.0001
8 -63.5820 <.0001 -5.55 <.0001
9 -58.4508 <.0001 -5.32 <.0001

Single Mean 7 -519.331 0.0001 -14.62 <.0001 106.92 0.0010
8 -497.216 0.0001 -14.16 <.0001 100.25 0.0010
9 -474.254 0.0001 -13.71 <.0001 93.96 0.0010

Trend 7 -527.202 0.0001 -14.71 <.0001 108.16 0.0010
8 -505.162 0.0001 -14.25 <.0001 101.46 0.0010
9 -482.181 0.0001 -13.79 <.0001 95.13 0.0010

Listing 7.4.2e: Augmented Dickey-Fuller Tests for stationarity.

1 /* donauwoerth_adjustedment.sas */
2 TITLE1 ’Analysis of Adjusted Data’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Remove period of 2433 and 365 days */
6 PROC TIMESERIES DATA=donau SEASONALITY=2433 OUTDECOMP=seasad1;
7 VAR discharge;
8 DECOMP / MODE=ADD;
9

10 PROC TIMESERIES DATA=seasad1 SEASONALITY=365 OUTDECOMP=seasad;
11 VAR sa;
12 DECOMP / MODE=ADD;
13 RUN;
14

15 /* Create zero-mean data set */
16 PROC MEANS DATA=seasad;
17 VAR sa;
18

19 DATA seasad;
20 MERGE seasad donau(KEEP=date);
21 sa=sa-201.6;
22

23 /* Graphical options */
24 SYMBOL1 V=DOT I=JOIN C=GREEN H=0.3;
25 SYMBOL2 V=NONE I=JOIN C=BLACK L=2;
26 AXIS1 LABEL=(ANGLE=90 ’Adjusted Data’);
27 AXIS2 LABEL=(’January 1985 to December 2004’)
28 ORDER=(’01JAN85’d ’01JAN89’d ’01JAN93’d ’01JAN97’d ’01JAN01’d

↪→’01JAN05’d);
29 AXIS3 LABEL=(’I’ F=CGREEK ’(l)’);
30 AXIS4 LABEL=(F=CGREEK ’l’);
31 AXIS5 LABEL=(ANGLE=90 ’Autocorrelation’) ORDER=(-0.2 TO 1 BY 0.1);
32 AXIS6 LABEL=(’Lag’) ORDER=(0 TO 1000 BY 100);
33 LEGEND1 LABEL=NONE VALUE=(’Autocorrelation of adjusted series’ ’Lower

↪→99-percent confidence limit’ ’Upper 99-percent confidence limit’)
↪→;

34

35 /* Plot data */
36 PROC GPLOT DATA=seasad;
37 PLOT sa*date=1 / VREF=0 VAXIS=AXIS1 HAXIS=AXIS2;
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38 RUN;
39

40 /* Compute and plot autocorrelation of adjusted data */
41 PROC ARIMA DATA=seasad;
42 IDENTIFY VAR=sa NLAG=1000 OUTCOV=corrseasad NOPRINT;
43

44 /* Add confidence intervals */
45 DATA corrseasad;
46 SET corrseasad;
47 u99=0.079;
48 l99=-0.079;
49

50 PROC GPLOT DATA=corrseasad;
51 PLOT corr*lag=1 u99*lag=2 l99*lag=2 / OVERLAY VAXIS=AXIS5 HAXIS=

↪→AXIS6 VREF=0 LEGEND=LEGEND1;
52 RUN;
53

54 /* Compute periodogram of adjusted data */
55 PROC SPECTRA DATA=seasad COEF P OUT=data1;
56 VAR sa;
57

58 /* Adjust different periodogram definitions */
59 DATA data2;
60 SET data1(FIRSTOBS=2);
61 p=P_01/2;
62 lambda=FREQ/(2*CoNSTANT(’PI’));
63 DROP P_01 FREQ;
64

65 /* Plot periodogram of adjusted data */
66 PROC GPLOT DATA=data2(OBS=100);
67 PLOT p*lambda=1 / VAXIS=AXIS3 HAXIS=AXIS4;
68 RUN;
69

70 /* Test for stationarity */
71 PROC ARIMA DATA=seasad;
72 IDENTIFY VAR=sa NLAG=100 STATIONARITY=(ADF=(7,8,9));
73 RUN; QUIT;

The seasonal influences of the periods of
both 365 and 2433 days are removed by
the SEASONALITY option in the procedure
PROC TIMESERIES. By MODE=ADD, an addi-
tive model for the time series is assumed. The
mean correction of -201.6 finally completes the
adjustment. The dates of the original Donau-
woerth dataset need to be restored by means
of MERGE within the DATA statement. Then, the
same steps as in the previous Program 7.4.1
(donauwoerth firstanalysis.sas) are executed,
i.e., the general plot as well as the plots of
the empirical autocorrelation function and pe-

riodogram are created from the adjusted data.
The confidence interval I := [−0.079, 0.079]
pertaining to the 3σ-rule is displayed by the
variables l99 and u99.
The final part of the program deals with the test
for stationarity. The augmented Dickey-Fuller
test is initiated by ADF in the STATIONARITY
option in PROC ARIMA. Since we deal with true
ARMA(p, q)-processes, we have to choose a
high-ordered autoregressive model, whose or-
der selection is specified by the subsequent
numbers 7, 8 and 9.
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In a next step we analyze the empirical partial autocorrelation func-
tion α̂(k) and the empirical autocorrelation function r(k) as esti-
mations of the theoretical partial autocorrelation function α(k) and
autocorrelation function ρ(k) of the underlying stationary process.
As shown before, both estimators become less reliable as k → n,
k < n = 7300.
Given a MA(q)-process satisfying the conditions of Lemma 7.3.9, we
attain, using Bartlett’s formula (7.28), for i > q and n sufficiently
large,

1

n
rii =

1

n

∞∑
m=1

ρ(m− i)2 =
1

n

(
1 + 2ρ(1)2 + 2ρ(2)2 · · ·+ 2ρ(q)2

)
(7.29)

as asymptotic variance of the autocorrelation estimators r̂n(i). Thus,
if the zero-mean time series ỹ1, . . . , ỹn is an outcome of the MA(q)-
process with a sufficiently large sample size n, then we can approxi-
mate above variance by

σ2
q :=

1

n

(
1 + 2r(1)2 + 2r(2)2 · · ·+ 2r(q)2

)
. (7.30)

Since r̂n(i) is asymptotically normal distributed (see Section 7.3), we
will reject the hypothesis H0 that actually a MA(q)-process is underly-
ing the time series ỹ1, . . . , ỹn, if significantly more than 1− α percent
of the empirical autocorrelation coefficients with lag greater than q
lie outside of the confidence interval I := [−σq · q1−α/2, σq · q1−α/2]
of level α, where q1−α/2 denotes the (1 − α/2)-quantile of the stan-
dard normal distribution. Setting q = 10, we attain in our case
σq ≈

√
5/7300 ≈ 0.026. By the 3σ rule, we would expect that almost

all empirical autocorrelation coefficients with lag greater than 10 will
be elements of the confidence interval J := [−0.079, 0.079]. Hence,
Plot 7.4.2b makes us doubt that we can express the time series by a
mere MA(q)-process with a small q ≤ 10.
The following figure of the empirical partial autocorrelation function
can mislead to the deceptive conclusion that an AR(3)-process might
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explain the time series quite well. Actually, if an AR(p)-process un-
derlies the adjusted time series ỹ1, . . . , ỹn with a sample size n of 7300,
then the asymptotic variances of the partial autocorrelation estima-
tors α̂n(k) with lag greater than p are equal to 1/7300, cf Theorem
7.2.21. Since α̂n(k) is asymptotically normal distributed, we attain
the 95-percent confidence interval I := [−0.0234, 0.0234], due to the
2σ rule. In view of the numerous quantity of empirical partial au-
tocorrelation coefficients lying outside of the interval I, summarized
in Table 7.4.1, we have no reason to choose mere AR(p)-processes as
adequate models.
Nevertheless, focusing on true ARMA(p, q)-processes, the shape of the
empirical partial autocorrelation might indicate that the autoregres-
sive order p will be equal to 2 or 3.

lag
partial

autocorrelation

1 0.92142
2 -0.33057
3 0.17989
4 0.02893
5 0.03871
6 0.05010
7 0.03633

15 0.03937

lag
partial

autocorrelation

44 0.03368
45 -0.02412
47 -0.02892
61 -0.03667
79 0.03072
81 -0.03248
82 0.02521
98 -0.02534

Table 7.4.1: Greatest coefficients in absolute value of empirical partial
autocorrelation of adjusted time series.
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Plot 7.4.3: Empirical partial autocorrelation function of adjusted
Donauwoerth Data.

1 /* donauwoerth_pacf.sas */
2 TITLE1 ’Partial Autocorrelation’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Note that this program requires the file ’seasad’ generated by the
↪→previous program (donauwoerth_adjustment.sas) */

6

7 /* Graphical options */
8 SYMBOL1 V=DOT I=JOIN C=GREEN H=0.5;
9 SYMBOL2 V=NONE I=JOIN C=BLACK L=2;

10 AXIS1 LABEL=(ANGLE=90 ’Partial Autocorrelation’) ORDER=(-0.4 TO 1 BY
↪→0.1);

11 AXIS2 LABEL=(’Lag’);
12 LEGEND2 LABEL=NONE VALUE=(’Partial autocorrelation of adjusted series’
13 ’Lower 95-percent confidence limit’ ’Upper 95-percent confidence

↪→limit’);
14

15 /* Compute partial autocorrelation of the seasonal adjusted data */
16 PROC ARIMA DATA=seasad;
17 IDENTIFY VAR=sa NLAG=100 OUTCOV=partcorr NOPRINT;
18 RUN;
19

20 /* Add confidence intervals */
21 DATA partcorr;
22 SET partcorr;
23 u95=0.0234;
24 l95=-0.0234;
25
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26 /* Plot partial autocorrelation */
27 PROC GPLOT DATA=partcorr(OBS=100);
28 PLOT partcorr*lag=1 u95*lag=2 l95*lag=2 / OVERLAY VAXIS=AXIS1 HAXIS=

↪→AXIS2 VREF=0 LEGEND=LEGEND2;
29 RUN;
30

31 /* Indicate greatest values of partial autocorrelation */
32 DATA gp(KEEP=lag partcorr);
33 SET partcorr;
34 IF ABS(partcorr) le 0.0234 THEN delete;
35 RUN; QUIT;

The empirical partial autocorrelation coeffi-
cients of the adjusted data are computed by
PROC ARIMA up to lag 100 and are plotted af-
terwards by PROC GPLOT. The confidence in-
terval [−0.0234, 0.0234] pertaining to the 2σ-rule

is again visualized by two variables u95 and
l95. The last DATA step finally generates a
file consisting of the empirical partial autocor-
relation coefficients outside of the confidence
interval.

7.5 Order Selection
As seen in Section 2, every invertible ARMA(p, q)-process satisfying
the stationarity condition can be both rewritten as Yt =

∑
v≥0 αvεt−v

and as εt =
∑

w≥0 βwYt−w, almost surely. Thus, they can be approx-
imated by a high-order MA(q)- or AR(p)-process, respectively. Ac-
cordingly, we could entirely omit the consideration of true ARMA(p, q)-
processes. However, if the time series actually results from a true
ARMA(p, q)-process, we would only attain an appropriate approxi-
mation by admitting a lot of parameters.
Box et al. (1994) suggested the choose of the model orders by means of
the principle of parsimony , preferring the model with least amount of
parameters. Suppose that a MA(q′)-, an AR(p′)- and an ARMA(p, q)-
model have been adjusted to a sample with almost equal goodness of
fit. Then, studies of Box and Jenkins have demonstrated that, in
general, p+ q ≤ q′ as well as p+ q ≤ p′. Thus, the ARMA(p, q)-model
requires the smallest quantity of parameters.
The principle of parsimony entails not only a comparatively small
number of parameters, which can reduce the efforts of estimating the
unknown model coefficients. In general, it also provides a more re-
liable forecast, since the forecast is based on fewer estimated model
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coefficients.
To specify the order of an invertible ARMA(p, q)-model

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q, t ∈ Z,
(7.31)

satisfying the stationarity condition with expectation E(Yt) = 0 and
variance Var(Yt) > 0 from a given zero-mean time series ỹ1, . . . , ỹn,
which is assumed to be a realization of the model, SAS offers sev-
eral methods within the framework of the ARIMA procedure. The
minimum information criterion, short MINIC method, the extended
sample autocorrelation function method (ESACF-method) and the
smallest canonical correlation method (SCAN-method) are provided
in the following sections. Since the methods depend on estimations,
it is always advisable to compare all three approaches.
Note that SAS only considers ARMA(p, q)-model satisfying the pre-
liminary conditions.

Information Criterions
To choose the orders p and q of an ARMA(p, q)-process one commonly
takes the pair (p, q) minimizing some information function, which is
based on the loglikelihood function.
For Gaussian ARMA(p, q)-processes we have derived the loglikelihood
function in Section 2.3

l(ϑ|y1, . . . , yn)

=
n

2
log(2πσ2)− 1

2
log(det Σ′)− 1

2σ2Q(ϑ|y1, . . . , yn). (7.32)

The maximum likelihood estimator ϑ̂ := (σ̂2, µ̂, â1, . . . , âp, b̂1, . . . , b̂q),
maximizing l(ϑ|y1, . . . , yn), can often be computed by deriving the
ordinary derivative and the partial derivatives of l(ϑ|y1, . . . , yn) and
equating them to zero. These are the so-called maximum likelihood
equations , which ϑ̂ necessarily has to satisfy. Holding σ2, a1, . . . , ap, b1,
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. . . , bq, fix we obtain

∂l(ϑ|y1, . . . , yn)

∂µ
=− 1

2σ2

∂Q(ϑ|y1, . . . , yn)

∂µ

=− 1

2σ2

∂

∂µ

(
(y − µ)TΣ′

−1
(y − µ)

)
=− 1

2σ2

∂

∂µ

(
yTΣ′

−1
y + µTΣ′

−1
µ

− µ · yTΣ′
−1

1− µ · 1TΣ′
−1
y
)

=− 1

2σ2 (2µ · 1TΣ′
−1

1− 2 · 1TΣ′
−1
y),

where 1 := (1, 1, . . . , 1)T ,y := (y1, . . . , yn)
T ∈ Rn. Equating the par-

tial derivative to zero yields finally the maximum likelihood estimator
µ̂ of µ

µ̂ =
1T Σ̂′

−1
y

1T Σ̂′
−1

1
, (7.33)

where Σ̂′ equals Σ′, where the unknown parameters a1, . . . , ap and
b1, . . . , bq are replaced by maximum likelihood estimators â1, . . . , âp
and b̂1, . . . , b̂q.
The maximum likelihood estimator σ̂2 of σ2 can be achieved in an
analogous way with µ, a1, . . . , ap, b1, . . . , bq being held fix. From

∂l(ϑ|y1, . . . , yn)

∂σ2 = − n

2σ2 +
Q(ϑ|y1, . . . , yn)

2σ4 ,

we attain

σ̂2 =
Q(ϑ̂|y1, . . . , yn)

n
. (7.34)

The computation of the remaining maximum likelihood estimators
â1, . . . , âp, b̂1, . . . , b̂q is usually a computer intensive problem.
Since the maximized loglikelihood function only depends on the model
assumption Mp,q, lp,q(y1, . . . , yn) := l(ϑ̂|y1, . . . , yn) is suitable to cre-
ate a measure for comparing the goodness of fit of different models.
The greater lp,q(y1, . . . , yn), the higher the likelihood that y1, . . . , yn
actually results from a Gaussian ARMA(p, q)-process.
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Comparing a Gaussian ARMA(p∗, q∗)- and ARMA(p′, q′)-process, with
p∗ ≥ p′, q∗ ≥ q′, immediately yields lp∗,q∗(y1, . . . , yn) ≥ lp′,q′(y1, . . . , yn).
Thus, without modification, a decision rule based on the pure max-
imized loglikelihood function would always suggest comprehensive
models.
Akaike (1977) therefore investigated the goodness of fit of ϑ̂ in view
of a new realization (z1, . . . , zn) from the same ARMA(p, q)-process,
which is independent from (y1, . . . , yn). The loglikelihood function
(7.32) then provides

l(ϑ̂|y1, . . . , yn)

= −n
2

log(2πσ̂2)− 1

2
log(det Σ̂′)− 1

2σ̂2Q(ϑ̂|y1, . . . , yn)

as well as

l(ϑ̂|z1, . . . , zn)

= −n
2

log(2πσ̂2)− 1

2
log(det Σ̂′)− 1

2σ̂2Q(ϑ̂|z1, . . . , zn).

This leads to the representation

l(ϑ̂|z1, . . . , zn)

= l(ϑ̂|y1, . . . , yn)−
1

2σ̂2

(
Q(ϑ̂|z1, . . . , zn)−Q(ϑ̂|y1, . . . , yn)

)
. (7.35)

The asymptotic distribution of Q(ϑ̂|Z1, . . . , Zn) − Q(ϑ̂|Y1, . . . , Yn),
where Z1, . . . , Zn and Y1, . . . , Yn are independent samples resulting
from the ARMA(p, q)-process, can be computed for n sufficiently
large, which reveals an asymptotic expectation of 2σ2(p + q) (see for
example Brockwell and Davis, 1991, Section 8.11). If we now replace

the term Q(ϑ̂|z1, . . . , zn) − Q(ϑ̂|y1, . . . , yn) in (7.35) by its approxi-
mately expected value 2σ̂2(p+ q), we attain with (7.34)

l(ϑ̂|z1, . . . , zn) = l(ϑ̂|y1, . . . , yn)− (p+ q)

= −n
2

log(2πσ̂2)− 1

2
log(det Σ̂′)− 1

2σ̂2Q(ϑ̂|y1, . . . , yn)− (p+ q)

= −n
2

log(2π)− n

2
log(σ̂2)− 1

2
log(det Σ̂′)− n

2
− (p+ q).
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The greater the value of l(ϑ̂|z1, . . . , zn), the more precisely the esti-

mated parameters σ̂2, µ̂, â1, . . . , âp, b̂1, . . . , b̂q reproduce the true under-
lying ARMA(p, q)-process. Due to this result, Akaike’s Information
Criterion (AIC) is defined as

AIC :=− 2

n
l(ϑ̂|z1, . . . , zn)− log(2π)− 1

n
log(det Σ̂′)− 1

= log(σ̂2) +
2(p+ q)

n

for sufficiently large n, since then n−1 log(det Σ̂′) becomes negligible.
Thus, the smaller the value of the AIC, the greater the loglikelihood
function l(ϑ̂|z1, . . . , zn) and, accordingly, the more precisely ϑ̂ esti-
mates ϑ.
The AIC adheres to the principle of parsimony as the model orders
are included in an additional term, the so-called penalty function.
However, comprehensive studies came to the conclusion that the AIC
has the tendency to overestimate the order p. Therefore, modified cri-
terions based on the AIC approach were suggested, like the Bayesian
Information Criterion (BIC)

BIC(p, q) := log(σ̂2
p,q) +

(p+ q) log(n)

n

and the Hannan-Quinn Criterion

HQ(p, q) := log(σ̂2
p,q) +

2(p+ q)c log(log(n))

n
with c > 1,

for which we refer to Akaike (1977) and Hannan and Quinn (1979).

Remark 7.5.1. Although these criterions are derived under the as-
sumption of an underlying Gaussian process, they nevertheless can
tentatively identify the orders p and q, even if the original process is
not Gaussian. This is due to the fact that the criterions can be re-
garded as a measure of the goodness of fit of the estimated covariance
matrix Σ̂′ to the time series (Brockwell and Davis, 2002).
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MINIC Method
The MINIC method is based on the previously introduced AIC and
BIC. The approach seeks the order pair (p, q) minimizing the BIC-
Criterion

BIC(p, q) = log(σ̂2
p,q) +

(p+ q) log(n)

n
in a chosen order range of pmin ≤ p ≤ pmax and qmin ≤ q ≤ qmax,
where σ̂2

p,q is an estimate of the variance Var(εt) = σ2 of the errors

εt in the model (7.31). In order to estimate σ2, we first have to esti-
mate the model parameters from the zero-mean time series ỹ1, . . . , ỹn.
Since their computation by means of the maximum likelihood method
is generally very extensive, the parameters are estimated from the re-
gression model

ỹt = a1ỹt−1 + · · ·+ apỹt−p + b1ε̂t−1 + · · ·+ bqε̂t−q + ε̂t (7.36)

for max{p, q} + 1 ≤ t ≤ n, where ε̂t is an estimator of εt. The least
squares approach, as introduced in Section 2.3, minimizes the residual
sum of squares

S2(a1, . . . , ap, b1, . . . , bq)

=
n∑

t=max{p,q}+1

(ỹt − a1ỹt−1 − · · · − apỹt−p − b1ε̂t−1 − · · · − bqε̂t−q)2

=
n∑

t=max{p,q}+1

ε̂2
t

with respect to the parameters a1, . . . , ap, b1, . . . , bq. It provides min-

imizers â1, . . . , âp, b̂1, . . . , b̂q. Note that the residuals ε̂t and the con-
stants are nested. Then,

σ̂2
p,q :=

1

n

n∑
t=max{p,q}+1

ˆ̃ε2
t , (7.37)

where

ˆ̃εt := ỹt − â1ỹt−1 − · · · − âpỹt−p − b̂1ε̂t−1 − · · · − b̂qε̂t−q,
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is an obvious estimate of σ2 for n sufficiently large. Now, we want
to estimate the error sequence (εt)t∈Z. Due to the invertibility of the
ARMA(p, q)-model (7.31), we find the almost surely autoregressive
representation of the errors εt =

∑
u≥0 cuYt−u, which we can approxi-

mate by a finite high-order autoregressive process εt,pε :=
∑pε

u=0 cuYt−u
of order pε. Consequently, ε̂t :=

∑pε
u=0 ĉuỹt−u is an obvious estimate of

the error εt for 1 + pε ≤ t ≤ n, where the coefficients ĉi are obtained
from the Yule-Walker-estimate (2.8). The length pε of the autoregres-
sive model is determined by the order that minimizes the AIC

AIC(pε, 0) := log(σ̂2
pε,0) + 2

pε + 0

n

in a chosen range of 0 < pε ≤ pε,max, where σ̂2
pε,0 := 1

n

∑n
t=1 ε̂

2
t with

ε̂t = 0 for t ∈ {1, . . . , pε} is again an obvious estimate of the error
variance Var(εt,pε) for n sufficiently large.
Hence, we can apply above regression (7.36) for pε + 1 + max{p, q} ≤
t ≤ n and receive (7.37) as an obvious estimate of σ2, where ˆ̃εt = 0
for t = max{p, q}+ 1, . . . ,max{p, q}+ pε.

ESACF Method
The second method provided by SAS is the ESACF method , devel-
oped by Tsay and Tiao (1984). The essential idea of this approach
is based on the estimation of the autoregressive part of the underly-
ing process in order to receive a pure moving average representation,
whose empirical autocorrelation function, the so-called extended sam-
ple autocorrelation function, will be close to 0 after the lag of order.
For this purpose, we utilize a recursion initiated by the best linear

approximation with real valued coefficients Ŷ
(k)
t := λ

(k)
0,1Yt−1 + · · · +

λ
(k)
0,kYt−k of Yt in the model (7.31) for a chosen k ∈ N. Recall that the

coefficients satisfyρ(1)
...

ρ(k)

 =

 ρ(0) . . . ρ(k − 1)
... . . . ...

ρ(−k + 1) . . . ρ(0)


λ

(k)
0,1
...

λ
(k)
0,k

 (7.38)

and are uniquely determined by Theorem 7.1.1. The lagged residual

R
(k)
t−1,0, R

(k)
s,0 := Ys − λ(k)

0,1Ys−1 − · · · − λ(k)
0,kYs−k, s ∈ Z, is a linear combi-
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nation of Yt−1, . . . , Yt−k−1. Hence, the best linear approximation of Yt
based on Yt−1, . . . , Yt−k−1 equals the best linear approximation of Yt
based on Yt−1, . . . , Yt−k, R

(k)
t−1,0. Thus, we have

λ
(k+1)
0,1 Yt−1 + · · ·+ λ

(k+1)
0,k+1Yt−k−1

= λ
(k)
1,1Yt−1 + · · ·+ λ

(k)
1,kYt−k + λ

(k)
1,k+1R

(k)
t−1,0

= λ
(k)
1,1Yt−1 + · · ·+ λ

(k)
1,kYt−k + λ

(k)
1,k+1(Yt−1 − λ(k)

0,1Yt−2 − · · · − λ(k)
0,kYt−k−1),

where the real valued coefficients consequently satisfy
λ

(k+1)
0,1

λ
(k+1)
0,2

...
λ

(k+1)
0,k−1

λ
(k+1)
0,k

λ
(k+1)
0,k+1

 =


1 0 ... 0 1

0 1
... −λ(k)

0,1

... ... ... ... ...
...

1 0 −λ(k)
0,k−2

... 1 −λ(k)
0,k−1

0 ... 0 −λ(k)
0,k




λ

(k)
1,1

λ
(k)
1,2

...
λ

(k)
1,k−1

λ
(k)
1,k

λ
(k)
1,k+1

 .

Together with (7.38), we attain ρ(0) ... ρ(k−1) ω0(k)
ρ(−1) ... ρ(k−2) ω−1(k)

...
...

...
ρ(−k) ... ρ(−1) ω−k(k)




λ
(k)
1,1

λ
(k)
1,2

...

λ
(k)
1,k+1

 =

 ρ(1)
ρ(2)
...

ρ(k+1)

 , (7.39)

where ωs(i) := ρ(s) − λ(i)
0,1ρ(s + 1) − · · · − λ(i)

0,iρ(s + i), s ∈ Z, i ∈ N.
Note that ωs(k) = 0 for s = −1, · · · − k by (7.38).
The recursion now proceeds with the best linear approximation of Yt
based on Yt−1, . . . , Yt−k, R

(k)
t−1,1, R

(k)
t−2,0 with

R
(k)
t−1,1 := Yt−1 − λ(k)

1,1Yt−2 − · · · − λ(k)
1,kYt−k−1 − λ(k)

1,k+1R
(k)
t−2,0

being the lagged residual of the previously executed regression. After
l > 0 such iterations, we get

λ
(k+l)
0,1 Yt−1 + · · ·+ λ

(k+l)
0,k+lYt−k−l

= λ
(k)
l,1 Yt−1 + · · ·+ λ

(k)
l,k Yt−k

+ λ
(k)
l,k+1R

(k)
t−1,l−1 + λ

(k)
l,k+2R

(k)
t−2,l−2 + · · ·+ λ

(k)
l,k+lR

(k)
t−l,0,



292 The Box–Jenkins Program: A Case Study

where

R
(k)
t′,l′ := Yt′ − λ(k)

l′,1Yt′−1 − · · · − λ(k)
l′,kYt′−k −

l′∑
i=1

λ
(k)
l′,k+iR

(k)
t′−i,l′−i

for t′ ∈ Z, l′ ∈ N0,
∑0

i=1 λ
(k)
l′,k+iR

(k)
t′−i,l′−i := 0 and where all occurring

coefficients are real valued. Since, on the other hand, R
(k)
t,l = Yt −

λ
(k+l)
0,1 Yt−1 − · · · − λ(k+l)

0,k+lYt−k−l, the coefficients satisfy

1 0 ··· 0

Ik −λ(k+l−1)
0,1 1

... ...

−λ(k+l−1)
0,2 −λ(k+l−2)

0,1

...
...

... 0
1

...
... −λ(k)

0,1

0lk
...

... ... ...
−λ(k+l−1)

0,k+l−2 −λ
(k+l−2)
0,k+l−3 ··· −λ

(k)
0,k−1

−λ(k+l−1)
0,k+l−1 −λ

(k+l−2)
0,k+l−2 ··· −λ(k)

0,k





λ
(k)
l,1

λ
(k)
l,2

λ
(k)
l,3

...

λ
(k)
l,k+l−1

λ
(k)
l,k+l


=


λ

(k+l)
0,1

...

...

λ
(k+l)
0,k+l

 ,

where Ik denotes the k× k-identity matrix and 0lk denotes the l× k-
matrix consisting of zeros. Applying again (7.38) yields

ρ(0) ... ρ(k−1) ω0(k+l−1) ω1(k+l−2) ... ωl−1(k)
ρ(−1) ... ρ(k−2) 0 ω0(k+l−1) ... ωl−2(k)

...
... 0 0

...
...

...
...

... ω0(k)
...

... 0 0 ... 0
...

...
...

...
...

ρ(−k−l+1) ... ρ(−l) 0 0 ... 0

 ·


λ
(k)
l,1

λ
(k)
l,2

λ
(k)
l,3

...
λ

(k)
l,k+l



=


ρ(1)
ρ(2)
ρ(3)
...

ρ(k+l)

 . (7.40)

If we assume that the coefficients λ
(k)
l,1 , . . . , λ

(k)
l,k+l are uniquely deter-
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mined, then, for k = p and l ≥ q,

λ
(p)
l,s :=


as if 1 ≤ s ≤ p(
σ2∑q

v=s−p bqαv−s+p −
∑q+p−s

i=1 ωi(2p+ l − s− i)λ(p)
l,s+i

)/
ω0(2p+ l − s) if p+ 1 ≤ s ≤ p+ q

0 if s > q + p
(7.41)

turns out to be the uniquely determined solution of the equation sys-
tem (7.40) by means of Theorem 2.2.8. Thus, we have the represen-
tation of a MA(q)-process

Yt −
p∑
s=1

λ
(p)
l,s Yt−s = Yt −

p∑
s=1

asYt−s =

q∑
v=0

bvεt−v,

whose autocorrelation function will cut off after lag q.
Now, in practice, we initiate the iteration by fitting a pure AR(k)-
regression model

ŷ
(k)
t,0 :=λ̂

(k)
0,1ỹt−1 + · · ·+ λ̂

(k)
0,kỹt−k

to the zero-mean time series ỹ1, . . . , ỹn for t = 1+k, . . . , n by means of
the least squares method. That is, we need to minimize the empirical
residual sum of squares

RSS(λ̂
(k)
0,1, . . . , λ̂

(k)
0,k) =

n−k∑
t=1

(ỹt+k − ŷ(k)
t+k,0)

2

=
n−k∑
t=1

(ỹt+k − λ̂(k)
0,1ỹt+k−1 + · · ·+ λ̂

(k)
0,kỹt)

2.

Using partial derivatives and equating them to zero yields the follow-
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ing equation system
∑n−k

t=1 ỹt+kỹt+k−1
...∑n−k

t=1 ỹt+kỹt

 (7.42)

=


∑n−k

t=1 ỹt+k−1ỹt+k−1 . . .
∑n−k

t=1 ỹt+k−1ỹt
... . . . ...∑n−k

t=1 ỹtỹt+k−1 . . .
∑n−k

t=1 ỹtỹt


 λ̂

(k)
0,1
...

λ̂
(k)
0,k,

 ,

which can be approximated byc(1)
...

c(k)

 =

 c(0) . . . c(k − 1)
... . . . ...

c(−k + 1) . . . c(0)


 λ̂

(k)
0,1
...

λ̂
(k)
0,k.


for n sufficiently large and k sufficiently small, where the terms c(i) =
1
n

∑n−i
t=1 ỹt+iỹt, i = 1, . . . , k, denote the empirical autocorrelation coef-

ficients at lag i. We define until the end of this section for a given
real valued series (ci)i∈N

h∑
i=j

ci := 0 if h < j as well as
h∏
i=j

ci := 1 if h < j.

Thus, proceeding the iteration, we recursively obtain after l > 0 steps

ŷ
(k)
t,l := λ̂

(k)
l,1 ỹt−1 + · · ·+ λ̂

(k)
l,k ỹt−k + λ̂

(k)
l,k+1r

(k)
t−1,l−1 + · · ·+ λ̂

(k)
l,k+lr

(k)
t−l,0

for t = 1 + k + l, . . . , n, where

r
(k)
t′,l′ := ỹt′ −

k∑
i=1

ỹt′−iλ̂
(k)
l′,i −

l′∑
j=1

λ̂
(k)
l′,k+jr

(k)
t′−j,l′−j (7.43)

for t′ ∈ Z, l′ ∈ N0.



7.5 Order Selection 295

Furthermore, we receive the equation system

c(0) ... c(k−1) ω̃0(k+l−1) ω̃1(k+l−2) ... ω̃l−1(k)
c(−1) ... c(k−2) 0 ω̃0(k+l−1) ... ω̃l−2(k)

...
... 0 0

...
...

...
...

... ω̃0(k)
...

... 0 0 ... 0
...

...
...

...
...

c(−k−l) ... c(−l−1) 0 0 ... 0

 ·


λ̂
(k)
l1

λ̂
(k)
l2

λ̂
(k)
l3

...
λ̂

(k)
lk+l



=


c(1)
c(2)
c(3)
...

c(k+l)

 ,

where ω̃s(i) := c(s)−λ(i)
0,1c(s+1)−· · ·−λ(i)

0,ic(s+i), s ∈ Z, i ∈ N. Since
1
n

∑n−k
t=1 Yt−kYt

P→ γ(k) as n → ∞ by Theorem 7.2.13, we attain, for

k = p, that (λ̂
(p)
l,1 , . . . , λ̂

(p)
l,p )T ≈ (λ

(p)
l,1 , . . . , λ

(p)
l,p )T = (a1, . . . , ap, )

T for n

sufficiently large, if, actually, the considered model (7.31) with p = k
and q ≤ l is underlying the zero-mean time series ỹ1, . . . , ỹn. Thereby,

Z
(p)
t,l :=Yt − λ̂(p)

l,1Yt−1 − λ̂(p)
l,2Yt−2 − · · · − λ̂(p)

l,pYt−p

≈Yt − a1Yt−1 − a2Yt−2 − · · · − apYt−p
=εt + b1εt−1 + · · ·+ bqεt−q

for t ∈ Z behaves like a MA(q)-process, if n is large enough. Defining

z
(p)
t,l := ỹt − λ̂(p)

l,1 ỹt−1 − λ̂(p)
l,2 ỹt−2 − · · · − λ̂(p)

l,p ỹt−p, t = p+ 1, . . . , n,

we attain a realization z
(p)
p+1,l, . . . , z

(p)
n,l of the process. Now, the empir-

ical autocorrelation coefficient at lag l + 1 can be computed, which
will be close to zero, if the zero-mean time series ỹ1, . . . , ỹn actually
results from an invertible ARMA(p, q)-process satisfying the station-
arity condition with expectation E(Yt) = 0, variance Var(Yt) > 0 and
q ≤ l.

Now, if k > p, l ≥ q, then, in general, λ̂
(k)
lk 6= 0. Hence, we can’t

assume that Z
(k)
t,l will behave like a MA(q)-process. We can handle

this by considering the following property.
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An ARMA(p, q)-process Yt = a1Yt−1 + · · ·+apYt−p+εt+ b1εt−1 + · · ·+
bqεt−q can be more conveniently rewritten as

α(B)[Yt] = β(B)[εt], (7.44)

where

α(B) := 1− a1B − · · · − apBp,

β(B) := 1 + b1B + · · ·+ bqB
q

are the characteristic polynomials in B of the autoregressive and mov-
ing average part of the ARMA(p, q)-process, respectively, and where
B denotes the backward shift operator defined by BsYt = Yt−s and
Bsεt = εt−s, s ∈ Z. If the process satisfies the stationarity condition,
then, by Theorem 2.1.11, there exists an absolutely summable causal
inverse filter (du)u≥0 of the filter c0 = 1, cu = au, u = 1, . . . , p, cu = 0
elsewhere. Hence, we may define α(B)−1 :=

∑
u≥0 duB

u and attain

Yt = α(B)−1β(B)[εt]

as the almost surely stationary solution of (Yt)t∈Z. Note that BiBj =
Bi+j for i, j ∈ Z. Theorem 2.1.7 provides the covariance generating
function

G(B) = σ2
(
α(B)−1β(B)

)(
α(B−1)−1β(B−1)

)
= σ2

(
α(B)−1β(B)

)(
α(F )−1β(F )

)
,

where F = B−1 denotes the forward shift operator . Consequently, if
we multiply both sides in (7.44) by an arbitrary factor (1−λB), λ ∈ R,
we receive the identical covariance generating function G(B). Hence,
we find infinitely many ARMA(p + l, q + l)-processes, l ∈ N, having
the same autocovariance function as the ARMA(p, q)-process.

Thus, Z
(k)
t,l behaves approximately like a MA(q+k−p)-process and the

empirical autocorrelation coefficient at lag l+ 1 + k − p, k > p, l ≥ q,

of the sample z
(k)
k+1,l, . . . , z

(k)
n,l is expected to be close to zero, if the zero-

mean time series ỹ1, . . . , ỹn results from the considered model (7.31).
Altogether, we expect, for an invertible ARMA(p, q)-process satisfy-
ing the stationarity condition with expectation E(Yt) = 0 and variance
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Var(Yt) > 0, the following theoretical ESACF-table, where the men-
tioned autocorrelation coefficients are summarized with respect to k
and l

k\l . . . q-1 q q+1 q+2 q+3 . . .

...
...

...
...

...
...

p-1 . . . X X X X X . . .
p . . . X 0 0 0 0 . . .

p+1 . . . X X 0 0 0 . . .
p+2 . . . X X X 0 0 . . .

...
...

...
... . . . . . . . . .

Table 7.5.1: Theoretical ESACF-table for an ARMA(p, q)-process,
where the entries ’X’ represent arbitrary numbers.

Furthermore, we can formulate a test H0 : ρk(l + 1) = 0 against
H1 : ρk(l + 1) 6= 0 based on the approximation of Bartlett’s formula
(7.30) for MA(l)-processes, where ρk(l + 1) denotes the autocorrela-

tion function of Z
(k)
t,l at lag l + 1. The hypothesis H0 : ρk(l + 1) = 0

that the autocorrelation function at lag l + 1 is equal to zero is re-
jected at level α and so is the presumed ARMA(k, l)-model, if its
empirical counterpart rk(l + 1) lies outside of the confidence inter-
val I := [−σlq1−α/2, σlq1−α/2], where q1−α/2 denotes the (1 − α/2)-
quantile of the standard normal distribution. Equivalent, the hypoth-
esis H0 : ρk(l+1) = 0 is rejected, if the pertaining approximate p-value
2(1−Φ0,σ2

l
(|r̂k(l + 1)|)) is significantly small, where Φ0,σ2

l
denotes the

normal distribution with expectation 0 and variance σ2
l and where

r̂k(l + 1) denotes the autocorrelation estimator at lag l + 1. The cor-
responding ESACF-table and p-values of the present case study are
summarized in the concluding analysis of the order selection methods
at the end of this section, cf. Listings 7.5.1e and 7.5.1f.
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ESACF Algorithm
The computation of the relevant autoregressive coefficients in the
ESACF-approach follows a simple algorithm

λ̂
(k)
l,r = λ̂

(k+1)
l−1,r − λ̂

(k)
l−1,r−1

λ̂
(k+1)
l−1,k+1

λ̂
(k)
l−1,k

(7.45)

for k, l ∈ N not too large and r ∈ {1, . . . , k}, where λ̂
(·)
·,0 = −1. Observe

that the estimations in the previously discussed iteration become less
reliable, if k or l are too large, due to the finite sample size n. Note
that the formula remains valid for r < 1, if we define furthermore

λ̂
(·)
·,i = 0 for negative i. Notice moreover that the algorithm as well as

the ESACF approach can only be executed, if λ̂
(k∗)
l∗,k∗ turns out to be

unequal to zero for l∗ ∈ {0, . . . , l− 1} and k∗ ∈ {k, . . . , k+ l− l∗− 1},
which, in general, is satisfied. Under latter condition above algorithm
can be shown inductively.

Proof. For k ∈ N not too large and t = k + 2, . . . , n,

ŷ
(k+1)
t,0 = λ̂

(k+1)
0,1 ỹt−1 + · · ·+ λ̂

(k+1)
0,k+1ỹt−k−1

as well as

ŷ
(k)
t,1 = λ̂

(k)
1,1ỹt−1 + · · ·+ λ̂

(k)
1,kỹt−k+

+ λ̂
(k)
1,k+1

(
ỹt−1 − λ̂(k)

0,1ỹt−2 − · · · − λ̂(k)
0,kỹt−k−1

)
is provided. Due to the equality of the coefficients, we find

λ̂
(k+1)
0,k+1 = −λ̂(k)

1,k+1λ̂
(k)
0,k as well as (7.46)

λ̂
(k+1)
0,i = λ̂

(k)
1,i − λ̂

(k)
1,k+1λ̂

(k)
0,i−1 = λ̂

(k)
1,i + λ̂

(k)
0,i−1

λ̂
(k+1)
0,k+1

λ̂
(k)
0,k

for i = 1, . . . , k. So the assertion (7.45) is proved for l = 1, k not too
large and r ∈ {1, . . . , k}.
Now, let λ̂

(k)
l∗,r = λ̂

(k+1)
l∗−1,r − λ̂

(k)
l∗−1,r−1(λ̂

(k+1)
l∗−1,k+1)/(λ̂

(k)
l∗−1,k) be shown for

every l∗ ∈ N with 1 ≤ l∗ < l, l, k ∈ N not too large, l 6= 1, and
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r ∈ {1, . . . , k}. Applying successively (7.43), we show, for t = k+ l′+
1, . . . , n and inductively on l′ ∈ N0, that

ŷ
(k)
t,l′ = λ̂

(k)
l′,1ỹt−1 + · · ·+ λ̂

(k)
l′,kỹt−k + λ̂

(k)
l′,k+1r

(k)
t−1,l′−1 + · · ·+ λ̂

(k)
l′,k+l′r

(k)
t−l′,0

=
k∑
i=1

λ̂
(k)
l′,i ỹt−i − λ̂

(k)
l′,k+1

k∑
ι=0

ỹt−ι−1λ̂
(k)
l′−1,ι

− λ̂(k)
l′,k+1

l′−1∑
j=1

λ̂
(k)
l′−1,k+jr

(k)
t−j−1,l′−j−1 +

l′∑
h=2

λ̂
(k)
l′,k+hr

(k)
t−h,l′−h

=
l′∑
s=0

k∑
i=max{0,1−s}

ỹt−i−sλ̂
(k)
l′−s,i

[ s1+s2+···=s∑
sj=0 if sj−1=0

(−λ̂(k)
l′,k+s1)·

(−λ̂∗(k)
l′−(s−s2),k+s2

) . . . (−λ̂∗(k)
l′−(s−s2−···−s′l),k+s′l

)
]

=
l′∑
s=0

k∑
i=max{0,1−s}

ỹt−i−sλ̂
(k)
l′−s,iΦ

(k)
s,l′ (7.47)

with

Φ
(k)
s,l′ :=

[ s1+s2+···=s∑
sj=0 if sj−1=0

(−λ̂(k)
l′,k+s1)

s∏
j=2

(
− λ̂∗(k)

l′−(s−s2−···−sj),k+sj

)]
,

where

(−λ̂∗(k)
l′−(s−s2−···−sj),k+sj

) =

{
1 if sj = 0,

−λ̂(k)
l′−(s−s2−···−sj),k+sj

else.

In the case of l′ = 0, we receive

ŷ
(k)
t,0 = λ̂

(k)
0,1ỹt−1 + · · ·+ λ̂

(k)
0,kỹt−k

=
k∑
i=1

ỹt−iλ̂
(k)
0,i .

So, let the assertion (7.47) be shown for one l′ ∈ N0. The induction
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is then accomplished by considering

ŷ
(k)
t,l′+1 = λ̂

(k)
l′+1,1ỹt−1 + · · ·+ λ̂

(k)
l′+1,kỹt−k +

l′∑
h=1

λ̂
(k)
l′+1,k+hr

(k)∗
t−h,l′+1−h

+
k∑
i=0

ỹt−i−l′−1λ̂
(k)
0,iΦ

(k)
l′+1,l′+1

=
l′∑
s=0

k∑
i=max{0,1−s}

ỹt−i−sλ̂
(k)
l′+1−s,iΦ

(k)
s,l′+1 +

k∑
i=0

ỹt−i−l′−1λ̂
(k)
0,iΦ

(k)
l′+1,l′+1

=
l′+1∑
s=0

k∑
i=max{0,1−s}

ỹt−i−sλ̂
(k)
l′+1−s,iΦ

(k)
s,l′+1.

Next, we show, inductively on m, that

λ̂
(k)
m,kΦ

(k)
l−m,l = λ̂

(k+1)
m,k+1Φ

(k+1)
l−m−1,l−1 + λ̂

(k)
m,kΦ

(k+1)
l−m,l−1 (7.48)

for m = 1, . . . , l − 1. Since ŷ
(k)
t,l′ = ŷ

(k+1)
t,l′−1 , we find, using (7.47), the

equal factors of ỹt−l′−k, which satisfy in conjunction with (7.46)

λ̂
(k)
0,kΦ

(k)
l′,l′ = λ̂

(k+1)
0,k+1Φ

(k+1)
l′−1,l′−1 ⇔ Φ

(k)
l′,l′ = −λ̂(k)

1,k+1Φ
(k+1)
l′−1,l′−1. (7.49)

Equating the factors of ỹt−k−l′+1 yields

λ̂
(k)
0,k−1Φ

(k)
l′,l′ + λ̂

(k)
1,kΦ

(k)
l′−1,l′ = λ̂

(k+1)
0,k Φ

(k+1)
l′−1,l′−1 + λ̂

(k+1)
1,k+1Φ

(k+1)
l′−2,l′−1. (7.50)

Multiplying both sides of the first equation in (7.49) with λ̂
(k)
0,k−1/λ̂

(k)
0,k,

where l′ is set equal to 1, and utilizing afterwards formula (7.45) with
r = k and l = 1

λ̂
(k)
0,k−1

λ̂
(k+1)
0,k+1

λ̂
(k)
0,k

= λ̂
(k+1)
0,k − λ̂(k)

1,k,

we get

λ̂
(k)
0,k−1Φ

(k)
l′,l′ =

(
λ̂

(k+1)
0,k − λ̂(k)

1,k

)
Φ

(k+1)
l′−1,l′−1,
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which leads together with (7.50) to

λ̂
(k)
1,kΦ

(k)
l′−1,l′ = λ̂

(k+1)
1,k+1Φ

(k+1)
l′−2,l′−1 + λ̂

(k)
1,kΦ

(k+1)
l′−1,l′−1.

So, the assertion (7.48) is shown for m = 1, since we may choose l′ = l.

Let λ̂
(k)
m′,kΦ

(k)
l−m′,l = λ̂

(k+1)
m′,k+1Φ

(k+1)
l−m′−1,l−1 + λ̂

(k)
m′,kΦ

(k+1)
l−m′,l−1 now be shown for

every m′ ∈ N with 1 ≤ m′ < m ≤ l − 1. We define

Ψ
(k)
l,m′ :=− λ̂(k+1)

m′,k+1Φ
(k+1)
l−1−m′,l−1 + λ̂

(k)
m′,kΦ

(k)
l−m′,l − λ̂

(k)
m′,kΦ

(k+1)
l−m′,l−1

as well as

Ψ
(k)
l,0 :=λ̂

(k)
0,kΦ

(k)
l,l − λ̂

(k+1)
0,k+1Φ

(k+1)
l−1,l−1,

which are equal to zero by (7.48) and (7.49). Together with (7.45)

λ̂
(k)
i,k−m+i

λ̂
(k+1)
i,k+1

λ̂
(k)
i,k

= λ̂
(k+1)
i,k−m+i+1 − λ̂

(k)
i+1,k−m+i+1,

which is true for every i satisfying 0 ≤ i < m, the required condition
can be derived

0 =
m−1∑
i=0

λ̂
(k)
i,k−m+i

λ̂
(k)
i,k

Ψ
(k)
l,i

=
l∑

s=0

k−1∑
i=max{0,1−s},i+s=k+l−m

λ̂
(k)
l−s,iΦ

(k)
s,l

−
l−1∑
v=0

k∑
j=max{0,1−v},v+j=k+l−m

λ̂
(k+1)
l−1−v,jΦ

(k+1)
v,l−1

+ λ̂
(k)
m,kΦ

(k+1)
l−m,l−1.

Noting the factors of ỹt−k−l+m

l∑
s=0

k∑
i=max{0,1−s},i+s=k+l−m

λ̂
(k)
l−s,iΦ

(k)
s,l

=
l−1∑
v=0

k+1∑
j=max{0,1−v},v+j=k+l−m

λ̂
(k+1)
l−1−v,jΦ

(k+1)
v,l−1 ,
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we finally attain

λ̂
(k)
m,kΦ

(k)
l−m,l = λ̂

(k+1)
m,k+1Φ

(k+1)
l−m−1,l−1 + λ̂

(k)
m,kΦ

(k+1)
l−m,l−1,

which completes the inductive proof of formula (7.48). Note that
(7.48) becomes in the case of m = l − 1

− λ̂(k)
l−1,kλ̂

(k)
l,k+1 = λ̂

(k+1)
l−1,k+1 − λ̂

(k)
l−1,kλ̂

(k+1)
l−1,k+2. (7.51)

Applied to the equal factors of ỹt−1

λ̂
(k)
l,1 + λ̂

(k)
l,k+1 = λ̂

(k+1)
l−1,1 + λ̂

(k+1)
l−1,k+2

yields assertion (7.45) for l, k not too large and r = 1,

λ̂
(k)
l,1 = λ̂

(k+1)
l−1,1 +

λ̂
(k+1)
l−1,k+1

λ̂
(k)
l−1,k

.

For the other cases of r ∈ {2, . . . , k}, we consider

0 =
l−2∑
i=0

λ̂
(k)
i,r−l+i

λ̂
(k)
i,k

Ψ
(k)
l,i

=
l∑

s=2

k∑
i=max{0,1−s},s+i=r

λ̂
(k)
l−s,iΦ

(k)
s,l

−
l−1∑
v=1

k+1∑
j=max{0,1−v},v+j=r

λ̂
(k+1)
l−1−v,jΦ

(k+1)
v,l−1

− λ̂(k)
l−1,r−1λ̂

(k+1)
l−1,k+2.
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Applied to the equation of the equal factors of ỹt−r leads by (7.51) to

l∑
s=0

k∑
i=max{0,1−s},s+i=r

λ̂
(k)
l−s,iΦ

(k)
s,l

=
l−1∑
v=0

k+1∑
j=max{0,1−v},v+j=r

λ̂
(k+1)
l−1−v,jΦ

(k+1)
v,l−1

⇔

λ̂
(k)
l,r − λ̂

(k)
l−1,r−1λ̂

(k)
l,k+1 +

l∑
s=2

k∑
i=max{0,1−s},s+i=r

λ̂
(k)
l−s,iΦ

(k)
s,l

= λ̂
(k+1)
l−1,r +

l−1∑
v=1

k+1∑
j=max{0,1−v},v+j=r

λ̂
(k+1)
l−1−v,jΦ

(k+1)
v,l−1

⇔
λ̂

(k)
l,r = λ̂

(k+1)
l−1,r + λ̂

(k)
l−1,r−1λ̂

(k)
l,k+1 − λ̂

(k)
l−1,r−1λ̂

(k+1)
l−1,k+2

⇔

λ̂
(k)
l,r = λ̂

(k+1)
l−1,r − λ̂

(k)
l−1,r−1

λ̂
(k+1)
l−1,k+1

λ̂
(k)
l−1,k

Remark 7.5.2. The autoregressive coefficients of the subsequent iter-
ations are uniquely determined by (7.45), once the initial approxima-

tion coefficients λ̂
(k)
0,1, . . . , λ̂

(k)
0,k have been provided for all k not too large.

Since we may carry over the algorithm to the theoretical case, the so-

lution (7.41) is in deed uniquely determined, if we provide λ
(k∗)
l∗,k∗ 6= 0

in the iteration for l∗ ∈ {0, . . . , l− 1} and k∗ ∈ {p, . . . , p+ l− l∗− 1}.

SCAN Method
The smallest canonical correlation method, short SCAN-method , sug-
gested by Tsay and Tiao (1985), seeks nonzero vectors a and b ∈ Rk+1
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such that the correlation

Corr(aTyt,k, b
Tys,k) =

aTΣyt,kys,kb

(aTΣyt,kyt,ka)1/2(bTΣys,kys,kb)
1/2 (7.52)

is minimized, where yt,k := (Yt, . . . , Yt−k)
T and ys,k := (Ys, . . . , Ys−k)

T ,
s, t ∈ Z, t > s, are random vectors of k + 1 process variables, and

ΣVW := Cov(V,W ). Setting αt,k := Σ
1/2
yt,kyt,ka and βs,k := Σ

1/2
ys,kys,kb,

we attain

∣∣∣Corr(aTyt,k, b
Tys,k)

∣∣∣ =

∣∣∣αT
t,kΣ

−1/2
yt,kyt,kΣyt,kys,kΣ

−1/2
ys,kys,kβs,k

∣∣∣
(αT

t,kαt,k)1/2(βTs,kβs,k)
1/2

≤
(αT

t,kΣ
−1/2
yt,kyt,kΣyt,kys,kΣ

−1
ys,kys,k

Σys,kyt,kΣ
−1/2
yt,kyt,kαt,k)

1/2

(αT
t,kαt,k)1/2

=: Rs,t,k(αt,k) (7.53)

by the Cauchy-Schwarz inequality. Since Rs,t,k(αt,k)
2 is a Rayleigh

quotient, it maps the k + 1 eigenvectors of the matrix

Mt−s,k := Σ−1/2
yt,kyt,k

Σyt,kys,kΣ
−1
ys,kys,k

Σys,kyt,kΣ
−1/2
yt,kyt,k

, (7.54)

which only depends on the lag t − s and k, on the corresponding
eigenvalues, which are called squared canonical correlations (see for
example Horn and Johnson, 1985). Hence, there exist nonzero vectors
a and b ∈ Rk+1 such that the squared value of above correlation (7.52)
is lower or equal than the smallest eigenvalue of Mt−s,k. As Mt−s,k
and

Σ−1
yt,kyt,k

Σyt,kys,kΣ
−1
ys,kys,k

Σys,kyt,k, (7.55)

have the same k + 1 eigenvalues λ1,t−s,k ≤ · · · ≤ λk+1,t−s,k with corre-

sponding eigenvectors Σ
1/2
yt,kyt,kµi and µi, i = 1, . . . , k+ 1, respectively,

we henceforth focus on matrix (7.55).
Now, given an invertible ARMA(p, q)-process satisfying the station-
arity condition with expectation E(Yt) = 0 and variance Var(Yt) > 0.
For k+1 > p and l+1 := t−s > q, we find, by Theorem 2.2.8, the nor-
malized eigenvector µ1 := η · (1,−a1, . . . ,−ap, 0, . . . , 0)T ∈ Rk+1, η ∈
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R, of Σ−1
yt,kyt,k

Σyt,kys,kΣ
−1
ys,kys,k

Σys,kyt,k with corresponding eigenvalue zero,
since Σys,kyt,kµ1 = 0 · µ1. Accordingly, the two linear combinations
Yt−a1Yt−1−· · ·−apYt−p and Ys−a1Ys−1−· · ·−apYs−p are uncorrelated
for t − s > q by (7.53), which isn’t surprising, since they are repre-
sentations of two MA(q)-processes, which are in deed uncorrelated for
t− s > q.
In practice, given a zero-mean time series ỹ1, . . . , ỹn with sufficiently
large n, the SCAN method computes the smallest eigenvalues λ̂1,t−s,k
of the empirical counterpart of (7.55)

Σ̂−1
yt,kyt,k

Σ̂yt,kys,kΣ̂
−1
ys,kys,k

Σ̂ys,kyt,k,

where the autocovariance coefficients γ(m) are replaced by their em-

pirical counterparts c(m). Since ĉ(m)
P→ γ(m) as n → ∞ by Theo-

rem 7.2.13, we expect that λ̂1,t−s,k ≈ λ1,t−s,k, if t − s and k are not

too large. Thus, λ̂1,t−s,k ≈ 0 for k + 1 > p and l + 1 = t − s > q,
if the zero-mean time series is actually a realization of an invertible
ARMA(p, q)-process satisfying the stationarity condition with expec-
tation E(Yt) = 0 and variance Var(Yt) > 0.
Applying Bartlett’s formula (7.28) form page 272 and the asymptotic
distribution of canonical correlations (e.g. Anderson, 1984, Section
13.5), the following asymptotic test statistic can be derived for testing
if the smallest eigenvalue equals zero,

c(k, l) = −(n− l − k)ln(1− λ̂∗1,l,k/d(k, l)),

where d(k, l)/(n − l − k) is an approximation of the variance of the

root of an appropriate estimator λ̂∗1,l,k of λ1,l,k. Note that λ̂∗1,l,k ≈ 0
entails c(k, l) ≈ 0. The test statistics c(k, l) are computed with respect
to k and l in a chosen order range of pmin ≤ k ≤ pmax and qmin ≤
l ≤ qmax. In the theoretical case, if actually an invertible ARMA(p, q)-
model satisfying the stationarity condition with expectation E(Yt) = 0
and variance Var(Yt) > 0 underlies the sample, we would attain the
following SCAN-table, consisting of the corresponding test statistics
c(k, l)
Under the hypothesis H0 that the ARMA(p, q)-model (7.31) is ac-
tually underlying the time series ỹ1, . . . , ỹn, it can be shown that
c(k, l) asymptotically follows a χ2

1-distribution, if p ≤ k ≤ pmax and
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k\l . . . q-1 q q+1 q+2 q+3 . . .

...
...

...
...

...
...

p-1 . . . X X X X X . . .
p . . . X 0 0 0 0 . . .

p+1 . . . X 0 0 0 0 . . .
p+2 . . . X 0 0 0 0 . . .

...
...

...
...

...
...

Table 7.5.2: Theoretical SCAN-table for an ARMA(p, q)-process,
where the entries ’X’ represent arbitrary numbers.

q ≤ l ≤ qmax. We would therefore reject the ARMA(p, q)-model
(7.31), if one of the test statistics c(k, l) is unexpectedly large or, re-
spectively, if one of the corresponding p-values 1 − χ2

1(c(k, l)) is too
small for k ∈ {p, . . . , pmax} and l ∈ {q, . . . , qmax}.
Note that the SCAN method is also valid in the case of nonstationary
ARMA(p, q)-processes (Tsay and Tiao, 1985).

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8

AR 0 9.275 9.042 8.830 8.674 8.555 8.461 8.386 8.320 8.256
AR 1 7.385 7.257 7.257 7.246 7.240 7.238 7.237 7.237 7.230
AR 2 7.270 7.257 7.241 7.234 7.235 7.236 7.237 7.238 7.239
AR 3 7.238 7.230 7.234 7.235 7.236 7.237 7.238 7.239 7.240
AR 4 7.239 7.234 7.235 7.236 7.237 7.238 7.239 7.240 7.241
AR 5 7.238 7.235 7.237 7.230 7.238 7.239 7.240 7.241 7.242
AR 6 7.237 7.236 7.237 7.238 7.239 7.240 7.241 7.242 7.243
AR 7 7.237 7.237 7.238 7.239 7.240 7.241 7.242 7.243 7.244
AR 8 7.238 7.238 7.239 7.240 7.241 7.242 7.243 7.244 7.246

Error series model: AR(15)
Minimum Table Value: BIC(2,3) = 7.234557

Listing 7.5.1: MINIC statistics (BIC values).
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Squared Canonical Correlation Estimates

Lags MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8

AR 1 0.0017 0.0110 0.0057 0.0037 0.0022 0.0003 <.0001 <.0001
AR 2 0.0110 0.0052 <.0001 <.0001 0.0003 <.0001 <.0001 <.0001
AR 3 0.0011 0.0006 <.0001 <.0001 0.0002 <.0001 <.0001 0.0001
AR 4 <.0001 0.0002 0.0003 0.0002 <.0001 <.0001 <.0001 <.0001
AR 5 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
AR 6 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
AR 7 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
AR 8 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Listing 7.5.1b: SCAN table.

SCAN Chi-Square[1] Probability Values

Lags MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8

AR 1 0.0019 <.0001 <.0001 <.0001 0.0004 0.1913 0.9996 0.9196
AR 2 <.0001 <.0001 0.5599 0.9704 0.1981 0.5792 0.9209 0.9869
AR 3 0.0068 0.0696 0.9662 0.5624 0.3517 0.6279 0.5379 0.5200
AR 4 0.9829 0.3445 0.1976 0.3302 0.5856 0.7427 0.5776 0.8706
AR 5 0.3654 0.6321 0.7352 0.9621 0.7129 0.5468 0.6914 0.9008
AR 6 0.6658 0.6065 0.8951 0.8164 0.6402 0.6789 0.6236 0.9755
AR 7 0.6065 0.6318 0.7999 0.9358 0.7356 0.7688 0.9253 0.7836
AR 8 0.9712 0.9404 0.6906 0.7235 0.7644 0.8052 0.8068 0.9596

Listing 7.5.1c: P-Values of SCAN-approach.

Extended Sample Autocorrelation Function

Lags MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8

AR 1 -0.0471 -0.1214 -0.0846 -0.0662 -0.0502 -0.0184 -0.0000 -0.0014
AR 2 -0.1627 -0.0826 0.0111 -0.0007 -0.0275 -0.0184 -0.0002 -0.0002
AR 3 -0.1219 -0.1148 0.0054 -0.0005 -0.0252 -0.0200 0.0020 -0.0005
AR 4 -0.0016 -0.1120 -0.0035 -0.0377 -0.0194 0.0086 -0.0119 -0.0029
AR 5 0.0152 -0.0607 -0.0494 0.0062 -0.0567 -0.0098 -0.0087 0.0034
AR 6 0.1803 -0.1915 -0.0708 -0.0067 -0.0260 0.0264 -0.0081 0.0013
AR 7 -0.4009 -0.2661 -0.1695 0.0091 -0.0240 0.0326 -0.0066 0.0008
AR 8 0.0266 0.0471 -0.2037 -0.0243 -0.0643 0.0226 0.0140 -0.0008

Listing 7.5.1d: ESACF table.

ESACF Probability Values

Lags MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8

AR 1 0.0003 <.0001 <.0001 <.0001 0.0002 0.1677 0.9992 0.9151
AR 2 <.0001 <.0001 0.3874 0.9565 0.0261 0.1675 0.9856 0.9845
AR 3 <.0001 <.0001 0.6730 0.9716 0.0496 0.1593 0.8740 0.9679
AR 4 0.9103 <.0001 0.7851 0.0058 0.1695 0.6034 0.3700 0.8187
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AR 5 0.2879 0.0004 0.0020 0.6925 <.0001 0.4564 0.5431 0.8464
AR 6 <.0001 <.0001 <.0001 0.6504 0.0497 0.0917 0.5944 0.9342
AR 7 <.0001 <.0001 <.0001 0.5307 0.0961 0.0231 0.6584 0.9595
AR 8 0.0681 0.0008 <.0001 0.0802 <.0001 0.0893 0.2590 0.9524

Listing 7.5.1e: P-Values of ESACF-approach.

ARMA(p+d,q) Tentative Order Selection Tests

---------SCAN-------- --------ESACF--------
p+d q BIC p+d q BIC

3 2 7.234889 4 5 7.238272
2 3 7.234557 1 6 7.237108
4 1 7.234974 2 6 7.237619
1 6 7.237108 3 6 7.238428

6 6 7.241525
8 6 7.243719

(5% Significance Level)

Listing 7.5.1f: Order suggestions of SAS, based on the methods SCAN
and ESACF.

Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MU -3.77827 7.19241 -0.53 0.5994 0
MA1,1 0.34553 0.03635 9.51 <.0001 1
MA1,2 0.34821 0.01508 23.10 <.0001 2
MA1,3 0.10327 0.01501 6.88 <.0001 3
AR1,1 1.61943 0.03526 45.93 <.0001 1
AR1,2 -0.63143 0.03272 -19.30 <.0001 2

Listing 7.5.1g: Parameter estimates of ARMA(2, 3)-model.

Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MU -3.58738 7.01935 -0.51 0.6093 0
MA1,1 0.58116 0.03196 18.19 <.0001 1
MA1,2 0.23329 0.03051 7.65 <.0001 2
AR1,1 1.85383 0.03216 57.64 <.0001 1
AR1,2 -1.04408 0.05319 -19.63 <.0001 2
AR1,3 0.17899 0.02792 6.41 <.0001 3

Listing 7.5.1h: Parameter estimates of ARMA(3, 2)-model.
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1 /* donauwoerth_orderselection.sas */
2 TITLE1 ’Order Selection’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Note that this program requires the file ’seasad’ generated by
↪→program donauwoerth_adjustment.sas */

6

7 /* Order selection by means of MINIC, SCAN and ESACF approach */
8 PROC ARIMA DATA=seasad;
9 IDENTIFY VAR=sa MINIC PERROR=(8:20) SCAN ESACF p=(1:8) q=(1:8);

10 RUN;
11

12 /* Estimate model coefficients for chosen orders p and q */
13 PROC ARIMA DATA=seasad;
14 IDENTIFY VAR=sa NLAG=100 NOPRINT;
15 ESTIMATE METHOD=CLS p=2 q=3;
16 RUN;
17

18 PROC ARIMA DATA=seasad;
19 IDENTIFY VAR=sa NLAG=100 NOPRINT;
20 ESTIMATE METHOD=CLS p=3 q=2;
21 RUN; QUIT;

The discussed order identification methods are
carried out in the framework of PROC ARIMA,
invoked by the options MINIC, SCAN and
ESACF in the IDENTIFY statement. p = (1 : 8)
and q = (1 : 8) restrict the order ranges,
admitting integer numbers in the range of 1
to 8 for the autoregressive and moving aver-
age order, respectively. By PERROR, the order

of the autoregressive model is specified that
is used for estimating the error sequence in
the MINIC approach. The second part of the
program estimates the coefficients of the pre-
ferred ARMA(2, 3)- and ARMA(3, 2)-models,
using conditional least squares, specified by
METHOD=CLS in the ESTIMATE statement.

p q BIC

2 3 7.234557
3 2 7.234889
4 1 7.234974
3 3 7.235731
2 4 7.235736
5 1 7.235882
4 2 7.235901

Table 7.5.3: Smallest BIC-values with respect to orders p and q.
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Figure 7.5.2: Graphical illustration of BIC-values.

SAS advocates an ARMA(2, 3)-model as appropriate model choose,
referring to the minimal BIC-value 7.234557 in Listing 7.5.1. The
seven smallest BIC-values are summarized in Table 7.5.3 and a graph-
ical illustration of the BIC-values is given in Figure 7.5.2.
The next smallest BIC-value 7.234889 pertains to the adjustment of
an ARMA(3, 2)-model. The SCAN method also prefers these two
models, whereas the ESACF technique suggests models with a nu-
merous quantity of parameters and great BIC-values. Hence, in the
following section, we will investigate the goodness of fit of both the
ARMA(2, 3)- and the ARMA(3, 2)-model.
The coefficients of the models are estimated by the least squares
method, as introduced in Section 2.3, conditional on the past esti-
mated residuals ε̂t and unobserved values ỹt being equal to 0 for t ≤ 0.
Accordingly, this method is also called the conditional least squares
method . SAS provides

Yt − 1.85383Yt−1 + 1.04408Yt−2 − 0.17899Yt−3

= εt − 0.58116εt−1 − 0.23329εt−2, (7.56)
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for the ARMA(3, 2)-model and

Yt − 1.61943Yt−1 + 0.63143Yt−2

= εt − 0.34553εt−1 − 0.34821εt−2 − 0.10327εt−3 (7.57)

for the ARMA(2, 3)-model. The negative means of -3.77827 and -
3.58738 are somewhat irritating in view of the used data with an
approximate zero mean. Yet, this fact presents no particular difficulty,
since it almost doesn’t affect the estimation of the model coefficients.
Both models satisfy the stationarity and invertibility condition, since
the roots 1.04, 1.79, 3.01 and 1.04, 1.53 pertaining to the characteristic
polynomials of the autoregressive part as well as the roots -3.66, 1.17
and 1.14, −2.26+1.84i,−2.26−1.84i pertaining to those of the moving
average part, respectively, lie outside of the unit circle. Note that
SAS estimates the coefficients in the ARMA(p, q)-model Yt−a1Yt−1−
a2Yt−2 − · · · − apYt−p = εt − b1εt−1 − · · · − bqεt−q.

7.6 Diagnostic Check
In the previous section we have adjusted an ARMA(3, 2)- as well
as an ARMA(2, 3)-model to the prepared Donauwoerth time series
ỹ1, . . . , ỹn. The next step is to check, if the time series can be inter-
preted as a typical realization of these models. This diagnostic check
can be divided in several classes:

1. Comparing theoretical structures with the corresponding empirical
counterparts

2. Test of the residuals for white noise

3. Overfitting

Comparing Theoretical and Empirical Structures
An obvious method of the first class is the comparison of the empirical
partial and empirical general autocorrelation function, α̂(k) and r(k),
with the theoretical partial and theoretical general autocorrelation
function, αp,q(k) and ρp,q(k), of the assumed ARMA(p, q)-model. The
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following plots show these comparisons for the identified ARMA(3, 2)-
and ARMA(2, 3)-model.

Plot 7.6.1: Theoretical autocorrelation function of the ARMA(3, 2)-
model with the empirical autocorrelation function of the adjusted time
series.



7.6 Diagnostic Check 313

Plot 7.6.1b: Theoretical partial autocorrelation function of the
ARMA(3, 2)-model with the empirical partial autocorrelation func-
tion of the adjusted time series.

Plot 7.6.1c: Theoretical autocorrelation function of the ARMA(2, 3)-
model with the empirical autocorrelation function of the adjusted time
series.
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Plot 7.6.1d: Theoretical partial autocorrelation function of the
ARMA(2, 3)-model with the empirical partial autocorrelation func-
tion of the adjusted time series.

1 /* donauwoerth_dcheck1.sas */
2 TITLE1 ’Theoretical process analysis’;
3 TITLE2 ’Donauwoerth Data’;
4 /* Note that this program requires the file ’corrseasad’ and ’seasad’

↪→generated by program donauwoerth_adjustment.sas */
5

6 /* Computation of theoretical autocorrelation */
7 PROC IML;
8 PHI={1 -1.61943 0.63143};
9 THETA={1 -0.34553 -0.34821 -0.10327};

10 LAG=1000;
11 CALL ARMACOV(COV, CROSS, CONVOL, PHI, THETA, LAG);
12 N=1:1000;
13 theocorr=COV/7.7685992485;
14 CREATE autocorr23;
15 APPEND;
16 QUIT;
17

18 PROC IML;
19 PHI={1 -1.85383 1.04408 -0.17899};
20 THETA={1 -0.58116 -0.23329};
21 LAG=1000;
22 CALL ARMACOV(COV, CROSS, CONVOL, PHI, THETA, LAG);
23 N=1:1000;
24 theocorr=COV/7.7608247812;
25 CREATE autocorr32;
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26 APPEND;
27 QUIT;
28

29 %MACRO Simproc(p,q);
30

31 /* Graphical options */
32 SYMBOL1 V=NONE C=BLUE I=JOIN W=2;
33 SYMBOL2 V=DOT C=RED I=NONE H=0.3 W=1;
34 SYMBOL3 V=DOT C=RED I=JOIN L=2 H=1 W=2;
35 AXIS1 LABEL=(ANGLE=90 ’Autocorrelations’);
36 AXIS2 LABEL=(’Lag’) ORDER = (0 TO 500 BY 100);
37 AXIS3 LABEL=(ANGLE=90 ’Partial Autocorrelations’);
38 AXIS4 LABEL=(’Lag’) ORDER = (0 TO 50 BY 10);
39 LEGEND1 LABEL=NONE VALUE=(’theoretical’ ’empirical’);
40

41 /* Comparison of theoretical and empirical autocorrelation */
42 DATA compare&p&q;
43 MERGE autocorr&p&q(KEEP=N theocorr) corrseasad(KEEP=corr);
44 PROC GPLOT DATA=compare&p&q(OBS=500);
45 PLOT theocorr*N=1 corr*N=2 / OVERLAY LEGEND=LEGEND1 VAXIS=AXIS1

↪→HAXIS=AXIS2;
46 RUN;
47

48 /* Computing of theoretical partial autocorrelation */
49 PROC TRANSPOSE DATA=autocorr&p&q OUT=transposed&p&q PREFIX=CORR;
50 DATA pacf&p&q(KEEP=PCORR0-PCORR100);
51 PCORR0=1;
52 SET transposed&p&q(WHERE=(_NAME_=’THEOCORR’));
53 ARRAY CORRS(100) CORR2-CORR101;
54 ARRAY PCORRS(100) PCORR1-PCORR100;
55 ARRAY P(100) P1-P100;
56 ARRAY w(100) w1-w100;
57 ARRAY A(100) A1-A100;
58 ARRAY B(100) B1-B100;
59 ARRAY u(100) u1-u100;
60 PCORRS(1)=CORRS(1);
61 P(1)=1-(CORRS(1)**2);
62 DO i=1 TO 100; B(i)=0; u(i)=0; END;
63 DO j=2 TO 100;
64 IF j > 2 THEN DO n=1 TO j-2; A(n)=B(n); END;
65 A(j-1)=PCORRS(j-1);
66 DO k=1 TO j-1; u(j)=u(j)-A(k)*CORRS(j-k); END;
67 w(j)=u(j)+CORRS(j);
68 PCORRS(j)=w(j)/P(j-1);
69 P(j)=P(j-1)*(1-PCORRS(j)**2);
70 DO m=1 TO j-1; B(m)=A(m)-PCORRS(j)*A(j-m); END;
71 END;
72 PROC TRANSPOSE DATA=pacf&p&q OUT=plotdata&p&q(KEEP=PACF1) PREFIX=PACF;
73

74 /* Comparison of theoretical and empirical partial autocorrelation */
75 DATA compareplot&p&q;
76 MERGE plotdata&p&q corrseasad(KEEP=partcorr LAG);
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77 PROC GPLOT DATA=compareplot&p&q(OBS=50);
78 PLOT PACF1*LAG=1 partcorr*LAG=3 / OVERLAY VAXIS=AXIS3 HAXIS=AXIS4

↪→LEGEND=LEGEND1;
79 RUN;
80

81 %MEND;
82 %Simproc(2,3);
83 %Simproc(3,2);
84 QUIT;

The procedure PROC IML generates an
ARMA(p, q)-process, where the p autoregres-
sive and q moving-average coefficients are
specified by the entries in brackets after the
PHI and THETA option, respectively. Note
that the coefficients are taken from the corre-
sponding characteristic polynomials with neg-
ative signs. The routine ARMACOV simulates
the theoretical autocovariance function up to
LAG 1000. Afterwards, the theoretical autocor-
relation coefficients are attained by dividing the
theoretical autocovariance coefficients by the
variance. The results are written into the files
autocorr23 and autocorr32, respectively.
The next part of the program is a macro-
step. The macro is named Simproc and
has two parameters p and q. Macros enable
the user to repeat a specific sequent of steps
and procedures with respect to some depen-
dent parameters, in our case the process or-
ders p and q. A macro step is initiated by
%MACRO and terminated by %MEND. Finally, by
the concluding statements %Simproc(2,3)
and %Simproc(3,2), the macro step is ex-

ecuted for the chosen pairs of process orders
(2, 3) and (3, 2).

The macro step: First, the theoretical autocor-
relation and the empirical autocorrelation func-
tion computed in Program 7.4.2, are summa-
rized in one file by the option MERGE in order
to derive a mutual, visual comparison. Based
on the theoretical autocorrelation function, the
theoretical partial autocorrelation is computed
by means of the Levinson–Durbin recursion, in-
troduced in Section 7.1. For this reason, the
autocorrelation data are transposed by the pro-
cedure PROC TRANSPOSE, such that the recur-
sion can be carried out by means of arrays,
as executed in the sequent DATA step. The
PREFIX option specifies the prefix of the trans-
posed and consecutively numbered variables.
Transposing back, the theoretical partial auto-
correlation coefficients are merged with the co-
efficients of the empirical partial autocorrela-
tions. PROC GPLOT together with the OVERLAY
option produces a single plot of both autocorre-
lation functions.

In all cases there exists a great agreement between the theoretical and
empirical parts. Hence, there is no reason to doubt the validity of any
of the underlying models.

Examination of Residuals
We suppose that the adjusted time series ỹ1, . . . ỹn was generated by
an invertible ARMA(p, q)-model

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q (7.58)
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satisfying the stationarity condition, E(Yt) = 0 and Var(Yt) > 0,
entailing that E(εt) = 0. As seen in recursion (2.23) on page 105 the
residuals can be estimated recursively by

ε̂t = ỹt − ŷt = ỹt − a1ỹt−1 − · · · − apỹt−p − b1ε̂t−1 − · · · − bqε̂t−q ≈ εt

for t = 1, . . . n, where ε̂t and ỹt are set equal to zero for t ≤ 0.
Under the model assumptions they show an approximate white noise
behavior and therefore, their empirical autocorrelation function r̂ε̂(k)
(2.24) will be close to zero for k > 0 not too large. Note that above
estimation of the empirical autocorrelation coefficients becomes less
reliable as k → n.
The following two figures show the empirical autocorrelation functions
of the estimated residuals up to lag 100 based on the ARMA(3, 2)-
model (7.56) and ARMA(2, 3)-model (7.57), respectively. Their pat-
tern indicate uncorrelated residuals in both cases, confirming the ad-
equacy of the chosen models.

Plot 7.6.2: Empirical autocorrelation function of estimated residuals
based on ARMA(3, 2)-model.
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Plot 7.6.2b: Empirical autocorrelation function of estimated residuals
based on ARMA(2, 3)-model.

1 /* donauwoerth_dcheck2.sas*/
2 TITLE1 ’Residual Analysis’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Note that this program requires ’seasad’ and ’donau’ generated by
↪→the program donauwoerth_adjustment.sas */

6

7 /* Preparations */
8 DATA donau2;
9 MERGE donau seasad(KEEP=SA);

10

11 /* Test for white noise */
12 PROC ARIMA DATA=donau2;
13 IDENTIFY VAR=sa NLAG=60 NOPRINT;
14 ESTIMATE METHOD=CLS p=3 q=2 NOPRINT;
15 FORECAST LEAD=0 OUT=forecast1 NOPRINT;
16 ESTIMATE METHOD=CLS p=2 q=3 NOPRINT;
17 FORECAST LEAD=0 OUT=forecast2 NOPRINT;
18

19 /* Compute empirical autocorrelations of estimated residuals */
20 PROC ARIMA DATA=forecast1;
21 IDENTIFY VAR=residual NLAG=150 OUTCOV=cov1 NOPRINT;
22 RUN;
23

24 PROC ARIMA DATA=forecast2;
25 IDENTIFY VAR=residual NLAG=150 OUTCOV=cov2 NOPRINT;
26 RUN;
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27

28 /* Graphical options */
29 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5;
30 AXIS1 LABEL=(ANGLE=90 ’Residual Autocorrelation’);
31 AXIS2 LABEL=(’Lag’) ORDER=(0 TO 150 BY 10);
32

33 /* Plot empirical autocorrelation function of estimated residuals */
34 PROC GPLOT DATA=cov1;
35 PLOT corr*LAG=1 / VREF=0 VAXIS=AXIS1 HAXIS=AXIS2;
36 RUN;
37

38 PROC GPLOT DATA=cov2;
39 PLOT corr*LAG=1 / VREF=0 VAXIS=AXIS1 HAXIS=AXIS2;
40 RUN; QUIT;

One-step forecasts of the adjusted series
ỹ1, . . . ỹn are computed by means of the
FORECAST statement in the ARIMA procedure.
LEAD=0 prevents future forecasts beyond the
sample size 7300. The corresponding forecasts

are written together with the estimated resid-
uals into the data file notated after the option
OUT. Finally, the empirical autocorrelations of
the estimated residuals are computed by PROC
ARIMA and plotted by PROC GPLOT.

A more formal test is the Portmanteau-test of Box and Pierce (1970)
presented in Section 2.3. SAS uses the Box–Ljung statistic with
weighted empirical autocorrelations

r̂ε̂(k)∗ :=

(
n+ 2

n− k

)1/2

r̂ε̂(k)

and computes the test statistic for different lags k.

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq --------------Autocorrelations-----------------

6 3.61 1 0.0573 0.001 -0.001 -0.010 0.018 -0.001 -0.008
12 6.44 7 0.4898 0.007 0.008 0.005 -0.008 -0.006 0.012
18 21.77 13 0.0590 0.018 -0.032 -0.024 -0.011 -0.006 0.001
24 25.98 19 0.1307 -0.011 0.012 0.002 -0.012 0.013 0.000
30 28.66 25 0.2785 0.014 -0.003 0.006 0.002 0.005 0.010
36 33.22 31 0.3597 -0.011 -0.008 -0.004 -0.005 -0.015 0.013
42 41.36 37 0.2861 0.009 -0.007 -0.018 0.010 0.011 0.020
48 58.93 43 0.0535 -0.030 0.022 0.006 0.030 0.007 -0.008
54 65.37 49 0.0589 0.007 -0.008 -0.014 -0.007 -0.009 0.021
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60 81.64 55 0.0114 0.015 0.007 -0.007 -0.008 0.005 0.042

Listing 7.6.3: Box–Ljung test of ARMA(3, 2)-model.

Autocorrelation Check of Residuals

To Chi- Pr >
Lag Square DF ChiSq --------------Autocorrelations-----------------

6 0.58 1 0.4478 -0.000 -0.001 -0.000 0.003 -0.002 -0.008
12 3.91 7 0.7901 0.009 0.010 0.007 -0.005 -0.004 0.013
18 18.68 13 0.1333 0.020 -0.031 -0.023 -0.011 -0.006 0.001
24 22.91 19 0.2411 -0.011 0.012 0.002 -0.012 0.013 -0.001
30 25.12 25 0.4559 0.012 -0.004 0.005 0.001 0.004 0.009
36 29.99 31 0.5177 -0.012 -0.009 -0.004 -0.006 -0.015 0.012
42 37.38 37 0.4517 0.009 -0.008 -0.018 0.009 0.010 0.019
48 54.56 43 0.1112 -0.030 0.021 0.005 0.029 0.008 -0.009
54 61.23 49 0.1128 0.007 -0.009 -0.014 -0.007 -0.009 0.021
60 76.95 55 0.0270 0.015 0.006 -0.006 -0.009 0.004 0.042

Listing 7.6.3b: Box–Ljung test of ARMA(2, 3)-model.

1 /* donauwoerth_dcheck3.sas*/
2 TITLE1 ’Residual Analysis’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Note that this program requires ’seasad’ and ’donau’ generated by
↪→the program donauwoerth_adjustment.sas */

6

7 /* Test preparation */
8 DATA donau2;
9 MERGE donau seasad(KEEP=SA);

10

11 /* Test for white noise */
12 PROC ARIMA DATA=donau2;
13 IDENTIFY VAR=sa NLAG=60 NOPRINT;
14 ESTIMATE METHOD=CLS p=3 q=2 WHITENOISE=IGNOREMISS;
15 FORECAST LEAD=0 OUT=out32(KEEP=residual RENAME=residual=res32);
16 ESTIMATE METHOD=CLS p=2 q=3 WHITENOISE=IGNOREMISS;
17 FORECAST LEAD=0 OUT=out23(KEEP=residual RENAME=residual=res23);
18 RUN; QUIT;

The Portmanteau-test of Box–Ljung is initiated
by the WHITENOISE=IGNOREMISS option in
the ESTIMATE statement of PROC ARIMA. The

residuals are also written in the files out32 and
out23 for further use.

For both models, the Listings 7.6.3 and 7.6.3 indicate sufficiently great
p-values for the Box–Ljung test statistic up to lag 54, letting us pre-
sume that the residuals are representations of a white noise process.
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Furthermore, we might deduce that the ARMA(2, 3)-model is the
more appropriate model, since the p-values are remarkably greater
than those of the ARMA(3, 2)-model.

Overfitting
The third diagnostic class is the method of overfitting. To verify the
fitting of an ARMA(p, q)-model, slightly more comprehensive models
with additional parameters are estimated, usually an ARMA(p, q +
1)- and ARMA(p + 1, q)-model. It is then expected that these new
additional parameters will be close to zero, if the initial ARMA(p, q)-
model is adequate.
The original ARMA(p, q)-model should be considered hazardous or
critical, if one of the following aspects occur in the more comprehen-
sive models:

1. The ’old’ parameters, which already have been estimated in the
ARMA(p, q)-model, are instable, i.e., the parameters differ ex-
tremely.

2. The ’new’ parameters differ significantly from zero.

3. The variance of the residuals is remarkably smaller than the cor-
responding one in the ARMA(p, q)-model.

Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MU -3.82315 7.23684 -0.53 0.5973 0
MA1,1 0.29901 0.14414 2.07 0.0381 1
MA1,2 0.37478 0.07795 4.81 <.0001 2
MA1,3 0.12273 0.05845 2.10 0.0358 3
AR1,1 1.57265 0.14479 10.86 <.0001 1
AR1,2 -0.54576 0.25535 -2.14 0.0326 2
AR1,3 -0.03884 0.11312 -0.34 0.7313 3

Listing 7.6.4: Estimated coefficients of ARMA(3, 3)-model.
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Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MU -3.93060 7.36255 -0.53 0.5935 0
MA1,1 0.79694 0.11780 6.77 <.0001 1
MA1,2 0.08912 0.09289 0.96 0.3374 2
AR1,1 2.07048 0.11761 17.60 <.0001 1
AR1,2 -1.46595 0.23778 -6.17 <.0001 2
AR1,3 0.47350 0.16658 2.84 0.0045 3
AR1,4 -0.08461 0.04472 -1.89 0.0585 4

Listing 7.6.4b: Estimated coefficients of ARMA(4, 2)-model.

Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MU -3.83016 7.24197 -0.53 0.5969 0
MA1,1 0.36178 0.05170 7.00 <.0001 1
MA1,2 0.35398 0.02026 17.47 <.0001 2
MA1,3 0.10115 0.01585 6.38 <.0001 3
MA1,4 -0.0069054 0.01850 -0.37 0.7089 4
AR1,1 1.63540 0.05031 32.51 <.0001 1
AR1,2 -0.64655 0.04735 -13.65 <.0001 2

Listing 7.6.4c: Estimated coefficients of ARMA(2, 4)-model.

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum
----------------------------------------------------------------------
res33 7300 0.2153979 37.1219190 -254.0443970 293.3993079
res42 7300 0.2172515 37.1232437 -253.8610208 294.0049942
res24 7300 0.2155696 37.1218896 -254.0365135 293.4197058
res32 7300 0.2090862 37.1311356 -254.2828124 292.9240859
res23 7300 0.2143327 37.1222160 -254.0171144 293.3822232
----------------------------------------------------------------------

Listing 7.6.4d: Statistics of estimated residuals of considered
overfitted models.

1 /* donauwoerth_overfitting.sas */
2 TITLE1 ’Overfitting’;
3 TITLE2 ’Donauwoerth Data’;
4 /* Note that this program requires the file ’seasad’ generated by

↪→program donauwoerth_adjustment.sas as well as ’out32’ and ’out23’
↪→ generated by donauwoerth_dcheck3.sas */

5

6 /* Estimate coefficients for chosen orders p and q */
7 PROC ARIMA DATA=seasad;
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8 IDENTIFY VAR=sa NLAG=100 NOPRINT;
9 ESTIMATE METHOD=CLS p=3 q=3;

10 FORECAST LEAD=0 OUT=out33(KEEP=residual RENAME=residual=res33);
11 RUN;
12

13 PROC ARIMA DATA=seasad;
14 IDENTIFY VAR=sa NLAG=100 NOPRINT;
15 ESTIMATE METHOD=CLS p=4 q=2;
16 FORECAST LEAD=0 OUT=out42(KEEP=residual RENAME=residual=res42);
17 RUN;
18

19 PROC ARIMA DATA=seasad;
20 IDENTIFY VAR=sa NLAG=100 NOPRINT;
21 ESTIMATE METHOD=CLS p=2 q=4;
22 FORECAST LEAD=0 OUT=out24(KEEP=residual RENAME=residual=res24);
23 RUN;
24

25 /* Merge estimated residuals */
26 DATA residuals;
27 MERGE out33 out42 out24 out32 out23;
28

29 /* Compute standard deviations of estimated residuals */
30 PROC MEANS DATA=residuals;
31 VAR res33 res42 res24 res32 res23;
32 RUN; QUIT;

The coefficients of the overfitted models
are again computed by the conditional least
squares approach (CLS) in the framework of
the procedure PROC ARIMA. Finally, the esti-

mated residuals of all considered models are
merged into one data file and the procedure
PROC MEANS computes their standard devia-
tions.

SAS computes the model coefficients for the chosen orders (3, 3), (2, 4)
and (4, 2) by means of the conditional least squares method and pro-
vides the ARMA(3, 3)-model

Yt − 1.57265Yt−1 + 0.54576Yt−2 + 0.03884Yt−3

= εt − 0.29901εt−1 − 0.37478εt−2 − 0.12273εt−3,

the ARMA(4, 2)-model

Yt − 2.07048Yt−1 + 1.46595Yt−2 − 0.47350Yt−3 + 0.08461Yt−4

= εt − 0.79694εt−1 − 0.08912εt−2

as well as the ARMA(2, 4)-model

Yt − 1.63540Yt−1 + 0.64655Yt−2

= εt − 0.36178εt−1 − 0.35398εt−2 − 0.10115εt−3 + 0.0069054εt−4.
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This overfitting method indicates that, once more, we have reason to
doubt the suitability of the adjusted ARMA(3, 2)-model

Yt − 1.85383Yt−1 + 1.04408Yt−2 − 0.17899Yt−3

= εt − 0.58116εt−1 − 0.23329εt−2,

since the ’old’ parameters in the ARMA(4, 2)- and ARMA(3, 3)-model
differ extremely from those inherent in the above ARMA(3, 2)-model
and the new added parameter −0.12273 in the ARMA(3, 3)-model is
not close enough to zero, as can be seen by the corresponding p-value.
Whereas the adjusted ARMA(2, 3)-model

Yt =− 1.61943Yt−1 + 0.63143Yt−2

= εt − 0.34553εt−1 − 0.34821εt−2 − 0.10327εt−3 (7.59)

satisfies these conditions. Finally, Listing 7.6.4d indicates the almost
equal standard deviations of 37.1 of all estimated residuals. Accord-
ingly, we assume almost equal residual variances. Therefore none of
the considered models has remarkably smaller variance in the residu-
als.

7.7 Forecasting
To justify forecasts based on the apparently adequate ARMA(2, 3)-
model (7.59), we have to verify its forecasting ability. It can be
achieved by either ex-ante or ex-post best one-step forecasts of the
sample Y1, . . . ,Yn. Latter method already has been executed in the
residual examination step. We have shown that the estimated forecast
errors ε̂t := ỹt − ŷt, t = 1, . . . , n can be regarded as a realization of a
white noise process. The ex-ante forecasts are based on the first n−m
observations ỹ1, . . . , ỹn−m, i.e., we adjust an ARMA(2, 3)-model to the
reduced time series ỹ1, . . . , ỹn−m. Afterwards, best one-step forecasts
ŷt of Yt are estimated for t = 1, . . . , n, based on the parameters of this
new ARMA(2, 3)-model.
Now, if the ARMA(2, 3)-model (7.59) is actually adequate, we will
again expect that the estimated forecast errors ε̂t = ỹt − ŷt, t = n −
m + 1, . . . , n behave like realizations of a white noise process, where
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the standard deviations of the estimated residuals ε̂1, . . . , ε̂n−m and
estimated forecast errors ε̂n−m+1, . . . , ε̂n should be close to each other.

Plot 7.7.1: Extract of estimated residuals.
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Plot 7.7.1b: Estimated forecast errors of ARMA(2, 3)-model based on
the reduced sample.

The SPECTRA Procedure

Test for White Noise for Variable RESIDUAL

M = 3467
Max(P(*)) 44294.13
Sum(P(*)) 9531509

Fisher’s Kappa: M*MAX(P(*))/SUM(P(*))

Kappa 16.11159

Bartlett’s Kolmogorov-Smirnov Statistic:
Maximum absolute difference of the standardized
partial sums of the periodogram and the CDF of a

uniform(0,1) random variable.

Test Statistic 0.006689
Approximate P-Value 0.9978

Listing 7.7.1c: Test for white noise of estimated residuals.
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Plot 7.7.1d: Visual representation of Bartlett-Kolmogorov-Smirnov
test for white noise of estimated residuals.

The SPECTRA Procedure

Test for White Noise for Variable RESIDUAL

M = 182
Max(P(*)) 18698.19
Sum(P(*)) 528566

Fisher’s Kappa: M*MAX(P(*))/SUM(P(*))

Kappa 6.438309

Bartlett’s Kolmogorov-Smirnov Statistic:
Maximum absolute difference of the standardized
partial sums of the periodogram and the CDF of a

uniform(0,1) random variable.

Test Statistic 0.09159
Approximate P-Value 0.0944

Listing 7.7.1e: Test for white noise of estimated forecast errors.
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Plot 7.7.1f: Visual representation of Bartlett-Kolmogorov-Smirnov
test for white noise of estimated forecast errors.

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum
----------------------------------------------------------------------
RESIDUAL 6935 -0.0038082 37.0756613 -254.3711804 293.3417594
forecasterror 365 -0.0658013 38.1064859 -149.4454536 222.4778315
----------------------------------------------------------------------

Listing 7.7.1g: Statistics of estimated residuals and estimated forecast
errors.

The SPECTRA Procedure

Test for White Noise for Variable RESIDUAL

M-1 2584
Max(P(*)) 24742.39
Sum(P(*)) 6268989

Fisher’s Kappa: (M-1)*Max(P(*))/Sum(P(*))

Kappa 10.19851

Bartlett’s Kolmogorov-Smirnov Statistic:
Maximum absolute difference of the standardized
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partial sums of the periodogram and the CDF of a
uniform(0,1) random variable.

Test Statistic 0.021987
Approximate P-Value 0.1644

Listing 7.7.1h: Test for white noise of the first 5170 estimated
residuals.

The SPECTRA Procedure

Test for White Noise for Variable RESIDUAL

M-1 2599
Max(P(*)) 39669.63
Sum(P(*)) 6277826

Fisher’s Kappa: (M-1)*Max(P(*))/Sum(P(*))

Kappa 16.4231

Bartlett’s Kolmogorov-Smirnov Statistic:
Maximum absolute difference of the standardized
partial sums of the periodogram and the CDF of a

uniform(0,1) random variable.

Test Statistic 0.022286
Approximate P-Value 0.1512

Listing 7.7.1i: Test for white noise of the first 5200 estimated residuals.

1 /* donauwoerth_forecasting.sas */
2 TITLE1 ’Forecasting’;
3 TITLE2 ’Donauwoerth Data’;
4

5 /* Note that this program requires the file ’seasad’ generated by
↪→program donauwoerth_adjustment.sas */

6

7 /* Cut off the last 365 values */
8 DATA reduced;
9 SET seasad(OBS=6935);

10 N=_N_;
11

12 /* Estimate model coefficients from reduced sample */
13 PROC ARIMA DATA=reduced;
14 IDENTIFY VAR=sa NLAG=300 NOPRINT;
15 ESTIMATE METHOD=CLS p=2 q=3 OUTMODEL=model NOPRINT;
16 RUN;
17

18 /* One-step-forecasts of previous estimated model */
19 PROC ARIMA DATA=seasad;



330 The Box–Jenkins Program: A Case Study

20 IDENTIFY VAR=sa NLAG=300 NOPRINT;
21 ESTIMATE METHOD=CLS p=2 q=3 MU=-0.04928 AR=1.60880 -0.62077 MA

↪→=0.33764 0.35157 0.10282 NOEST NOPRINT;
22 FORECAST LEAD=0 OUT=forecast NOPRINT;
23 RUN;
24

25 DATA forecast;
26 SET forecast;
27 lag=_N_;
28

29 DATA residual1(KEEP=residual lag);
30 SET forecast(OBS=6935);
31

32 DATA residual2(KEEP=residual date);
33 MERGE forecast(FIRSTOBS=6936) donau(FIRSTOBS=6936 KEEP=date);
34

35 DATA residual3(KEEP=residual lag);
36 SET forecast(OBS=5170);
37

38 DATA residual4(KEEP=residual lag);
39 SET forecast(OBS=5200);
40

41 /* Graphical options */
42 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5;
43 SYMBOL2 V=DOT I=JOIN H=0.4 C=BLUE W=1 L=1;
44 AXIS1 LABEL=(’Index’)
45 ORDER=(4800 5000 5200);
46 AXIS2 LABEL=(ANGLE=90 ’Estimated residual’);
47 AXIS3 LABEL=(’January 2004 to January 2005’)
48 ORDER=(’01JAN04’d ’01MAR04’d ’01MAY04’d ’01JUL04’d ’01SEP04’d

↪→’01NOV04’d ’01JAN05’d);
49 AXIS4 LABEL=(ANGLE=90 ’Estimated forecast error’);
50

51

52 /* Plot estimated residuals */
53 PROC GPLOT DATA=residual1(FIRSTOBS=4800);
54 PLOT residual*lag=2 /HAXIS=AXIS1 VAXIS=AXIS2;
55 RUN;
56

57 /* Plot estimated forecast errors of best one-step forecasts */
58 PROC GPLOT DATA=residual2;
59 PLOT residual*date=2 /HAXIS=AXIS3 VAXIS=AXIS4;
60 RUN;
61

62 /* Testing for white noise */
63 %MACRO wn(k);
64 PROC SPECTRA DATA=residual&k P WHITETEST OUT=periodo&k;
65 VAR residual;
66 RUN;
67

68 /* Calculate the sum of the periodogram */
69 PROC MEANS DATA=periodo&k(FIRSTOBS=2) NOPRINT;
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70 VAR P_01;
71 OUTPUT OUT=psum&k SUM=psum;
72 RUN;
73

74 /* Compute empirical distribution function of cumulated periodogram
↪→and its confidence bands */

75 DATA conf&k;
76 SET periodo&k(FIRSTOBS=2);
77 IF _N_=1 THEN SET psum&k;
78 RETAIN s 0;
79 s=s+P_01/psum;
80 fm=_N_/(_FREQ_-1);
81 yu_01=fm+1.63/SQRT(_FREQ_-1);
82 yl_01=fm-1.63/SQRT(_FREQ_-1);
83 yu_05=fm+1.36/SQRT(_FREQ_-1);
84 yl_05=fm-1.36/SQRT(_FREQ_-1);
85

86 /* Graphical options */
87 SYMBOL3 V=NONE I=STEPJ C=GREEN;
88 SYMBOL4 V=NONE I=JOIN C=RED L=2;
89 SYMBOL5 V=NONE I=JOIN C=RED L=1;
90 AXIS5 LABEL=(’x’) ORDER=(.0 TO 1.0 BY .1);
91 AXIS6 LABEL=NONE;
92

93 /* Plot empirical distribution function of cumulated periodogram with
↪→its confidence bands */

94 PROC GPLOT DATA=conf&k;
95 PLOT fm*s=3 yu_01*fm=4 yl_01*fm=4 yu_05*fm=5 yl_05*fm=5 / OVERLAY

↪→HAXIS=AXIS5 VAXIS=AXIS6;
96 RUN;
97 %MEND;
98

99 %wn(1);
100 %wn(2);
101

102 /* Merge estimated residuals and estimated forecast errors */
103 DATA residuals;
104 MERGE residual1(KEEP=residual) residual2(KEEP=residual RENAME=(

↪→residual=forecasterror));
105

106 /* Compute standard deviations */
107 PROC MEANS DATA=residuals;
108 VAR residual forecasterror;
109 RUN;
110

111 %wn(3);
112 %wn(4);
113

114 QUIT;
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In the first DATA step, the adjusted discharge
values pertaining to the discharge values mea-
sured during the last year are removed from
the sample. In the framework of the proce-
dure PROC ARIMA, an ARMA(2, 3)-model is
adjusted to the reduced sample. The cor-
responding estimated model coefficients and
further model details are written into the file
’model’, by the option OUTMODEL. Best one-
step forecasts of the ARMA(2, 3)-model are
then computed by PROC ARIMA again, where
the model orders, model coefficients and model
mean are specified in the ESTIMATE state-
ment, where the option NOEST suppresses a
new model estimation.
The following steps deal with the examination

of the residuals and forecast errors. The resid-
uals coincide with the one-step forecasts errors
of the first 6935 observations, whereas the fore-
cast errors are given by one-step forecasts er-
rors of the last 365 observations. Visual repre-
sentation is created by PROC GPLOT.
The macro-step then executes Fisher’s test for
hidden periodicities as well as the Bartlett–
Kolmogorov–Smirnov test for both residuals
and forecast errors within the procedure PROC
SPECTRA. After renaming, they are written into
a single file. PROC MEANS computes their stan-
dard deviations for a direct comparison.
Afterwards tests for white noise are computed
for other numbers of estimated residuals by the
macro.

The ex-ante forecasts are computed from the dataset without the
last 365 observations. Plot 7.7.1b of the estimated forecast errors
ε̂t = ỹt − ŷt, t = n − m + 1, . . . , n indicates an accidental pattern.
Applying Fisher’s test as well as Bartlett-Kolmogorov-Smirnov’s test
for white noise, as introduced in Section 6.1, the p-value of 0.0944
and Fisher’s κ-statistic of 6.438309 do not reject the hypothesis that
the estimated forecast errors are generated from a white noise pro-
cess (εt)t∈Z, where the εt are independent and identically normal dis-
tributed (Listing 7.7.1e). Whereas, testing the estimated residuals for
white noise behavior yields a conflicting result. Bartlett-Kolmogorov-
Smirnov’s test clearly doesn’t reject the hypothesis that the estimated
residuals are generated from a white noise process (εt)t∈Z, where the
εt are independent and identically normal distributed, due to the
great p-value of 0.9978 (Listing 7.7.1c). On the other hand, the
conservative test of Fisher produces an irritating, high κ-statistic of
16.11159, which would lead to a rejection of the hypothesis. Further
examinations with Fisher’s test lead to the κ-statistic of 10.19851,
when testing the first 5170 estimated residuals, and it leads to the
κ-statistic of 16.4231, when testing the first 5200 estimated residu-
als (Listing 7.7.1h and 7.7.1i). Applying the result of Exercise 6.12
P{κm > x} ≈ 1 − exp(−me−x), we obtain the approximate p-values
of 0.09 and < 0.001, respectively. That is, Fisher’s test doesn’t reject
the hypothesis for the first 5170 estimated residuals but it clearly re-
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jects the hypothesis for the first 5200 ones. This would imply that
the additional 30 values cause such a great periodical influence such
that a white noise behavior is strictly rejected. In view of the small
number of 30, relatively to 5170, Plot 7.7.1 and the great p-value
0.9978 of Bartlett-Kolmogorov-Smirnov’s test we can’t trust Fisher’s
κ-statistic. Recall, as well, that the Portmanteau-test of Box–Ljung
has not rejected the hypothesis that the 7300 estimated residuals re-
sult from a white noise, carried out in Section 7.6. Finally, Listing
7.7.1g displays that the standard deviations 37.1 and 38.1 of the esti-
mated residuals and estimated forecast errors, respectively, are close
to each other.
Hence, the validity of the ARMA(2, 3)-model (7.59) has been estab-
lished, justifying us to predict future values using best h-step fore-
casts Ŷn+h based on this model. Since the model is invertible, it can
be almost surely rewritten as AR(∞)-process Yt =

∑
u>0 cuYt−u + εt.

Consequently, the best h-step forecast Ŷn+h of Yn+h can be estimated
by ŷn+h =

∑h−1
u=1 cuŷn+h−u+

∑t+h−1
v=h cvỹt+h−v, cf. Theorem 2.3.4, where

the estimated forecasts ŷn+i, i = 1, . . . , h are computed recursively.

An estimated best h-step forecast ŷ
(o)
n+h of the original Donauwoerth

time series y1, . . . , yn is then obviously given by

ŷ
(o)
n+h := ŷn+h + µ+ Ŝ

(365)
n+h + Ŝ

(2433)
n+h , (7.60)

where µ denotes the arithmetic mean of y1, . . . , yn and where Ŝ
(365)
n+h

and Ŝ
(2433)
n+h are estimations of the seasonal nonrandom components

at lag n + h pertaining to the cycles with periods of 365 and 2433
days, respectively. These estimations already have been computed
by Program 7.4.2. Note that we can only make reasonable forecasts
for the next few days, as ŷn+h approaches its expectation zero for
increasing h.
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Plot 7.7.2: Estimated best h-step forecasts of Donauwoerth Data for
the next month by means of identified ARMA(2, 3)-model.

1 /* donauwoerth_final.sas */
2 TITLE1 ;
3 TITLE2 ;
4

5 /* Note that this program requires the file ’seasad’ and ’seasad1’
↪→generated by program donauwoerth_adjustment.sas */

6

7 /* Computations of forecasts for next 31 days */
8 PROC ARIMA DATA=seasad;
9 IDENTIFY VAR=sa NLAG=300 NOPRINT;

10 ESTIMATE METHOD=CLS p=2 q=3 OUTMODEL=model NOPRINT;
11 FORECAST LEAD=31 OUT=forecast;
12 RUN;
13

14 /* Plot preparations */
15 DATA forecast(DROP=residual sa);
16 SET forecast(FIRSTOBS=7301);
17 N=_N_;
18 date=MDY(1,N,2005);
19 FORMAT date ddmmyy10.;
20

21 DATA seascomp(KEEP=SC RENAME=(SC=SC1));
22 SET seasad(FIRSTOBS=1 OBS=31);
23

24 /* Adding the seasonal components and mean */
25 DATA seascomp;
26 MERGE forecast seascomp seasad1(OBS=31 KEEP=SC RENAME=(SC=SC2));
27 forecast=forecast+SC1+SC2+201.6;
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28

29

30 DATA plotforecast;
31 SET donau seascomp;
32

33 /* Graphical display */
34 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5;
35 SYMBOL2 V=DOT I=JOIN H=0.4 C=BLUE W=1 L=1;
36 AXIS1 LABEL=NONE ORDER=(’01OCT04’d ’01NOV04’d ’01DEC04’d ’01JAN05’d

↪→’01FEB05’d);
37 AXIS2 LABEL=(ANGLE=90 ’Original series with forecasts’) ORDER=(0 to

↪→300 by 100);
38 LEGEND1 LABEL=NONE VALUE=(’Original series’ ’Forecasts’ ’Lower 95-

↪→percent confidence limit’ ’Upper 95-percent confidence limit’);
39

40 PROC GPLOT DATA=plotforecast(FIRSTOBS=7209);
41 PLOT discharge*date=1 forecast*date=2 / OVERLAY HAXIS=AXIS1 VAXIS=

↪→AXIS2 LEGEND=LEGEND1;
42 RUN; QUIT;

The best h-step forecasts for the next month
are computed within PROC ARIMA by the
FORECAST statement and the option LEAD.
Adding the corresponding seasonal compo-
nents and the arithmetic mean (see (7.60)),

forecasts of the original time series are at-
tained. The procedure PROC GPLOT then cre-
ates a graphical visualization of the best h-step
forecasts.

Result and Conclusion
The case study indicates that an ARMA(2, 3)-model can be adjusted
to the prepared data of discharge values taken by the gaging station
nearby the Donau at Donauwoerth for appropriately explaining the
data. For this reason, we assume that a new set of data containing
further or entirely future discharge values taken during the years after
2004 can be modeled by means of an ARMA(2, 3)-process as well,
entailing reasonable forecasts for the next few days.

Exercises
7.1. Show the following generalization of Lemma 7.3.1: Consider two
sequences (Yn)n∈N and (Xn)n∈N of real valued random k-vectors,
all defined on the same probability space (Ω,A,P) and a sequence
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(hn)n∈N of positive real valued numbers, such that Yn = OP (hn) and
Xn = oP (1). Then, YnXn = oP (hn).

7.2. Prove the derivation of Equation 7.42.

7.3. (IQ Data) Apply the Box–Jenkins program to the IQ Data. This
dataset contains a monthly index of quality ranging from 0 to 100.
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Covering theorem, 191
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empirical, 140
Cycle

Juglar, 25
Césaro convergence, 183

Data
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Donauwoerth, 223
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Nile, 221
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Public Expenditures, 42
Share, 218
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Sunspot, iii, 36, 207
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Wölfer, see Sunspot Data
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Dickey–Fuller test, see Test
Difference

seasonal, 32
Difference filter, see Filter
Discrete spectral average estima-

tor, 203, 204
Distribution
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Error correction, 85
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band pass, 173
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exponential smoother, 33
high pass, 173
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linear, 16, 17, 203
low pass, 17, 173
product, 57

Fisher test for hidden periodici-
ties, see Test

Fisher’s kappa statistic, 191
Forecast

by an exponential smoother,
35

ex-ante, 324
ex-post, 324

Forecasting, 107, 324
Forward shift operator, 296
Fourier frequency, see Frequency
Fourier transform, 147

inverse, 152
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domain, 135
Fourier, 140
Nyquist, 155, 166

Function
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allometric, 13
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gamma, 91, 213
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Mitscherlich, 11
positive semidefinite, 160
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Fundamental period, see Period
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Gumbel distribution, see Distri-

bution

Hang Seng
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terion, see Information cri-
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Helly’s selection theorem, 163
Henderson moving average, 24
Herglotz’s theorem, 161
Hertz, 135
High pass filter, see Filter

Imaginary part
of a complex number, 47

Information criterion
Akaike’s, 100
Bayesian, 100
Hannan–Quinn, 100

Innovation, 91
Input, 17
Intensity, 142
Intercept, 13
Inverse filter, see Filter

Kalman
filter, 125, 129
h-step prediction, 129
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prediction step of, 129
updating step of, 129

gain, 127, 128
recursions, 125

Kernel
Bartlett, 210
Blackman–Tukey, 210, 211
Fejer, 221
function, 209
Parzen, 210
triangular, 210
truncated, 210
Tukey–Hanning, 210, 212

Kolmogorov’s theorem, 160, 161
Kolmogorov–Smirnov statistic, 192
Kronecker’s lemma, 218

Landau-symbol, 259
Laurent series, 55
Leakage phenomenon, 207
Least squares, 104

estimate, 6, 83
approach, 105
filter design, 173

Least squares method
conditional, 310

Levinson–Durbin recursion, 229,
316

Likelihood function, 102
Lindeberg condition, 201
Linear process, 204
Local polynomial estimator, 27
Log returns, 93
Logistic function, see Function
Loglikelihood function, 103
Low pass filter, see Filter

MA-process, see Process

Maximum impregnation, 8
Maximum likelihood

equations, 285
estimator, 93, 102, 285
principle, 102

MINIC method, 289
Mitscherlich function, see Func-

tion
Moving average, 17, 203

simple, 17

Normal equations, 27, 139
North Rhine-Westphalia, 8
Nyquist frequency, see Frequency

Observation equation, 121
Order selection, 99, 284
Order statistics, 190
Output, 17
Overfitting, 100, 311, 321

Partial autocorrelation, 224, 231
coefficient, 70

empirical, 71
estimator, 250
function, 225

Partial correlation, 224
matrix, 232

Partial covariance
matrix, 232

Parzen kernel, see Kernel
Penalty function, 288
Period, 135

fundamental, 136
Periodic, 136
Periodogram, 143, 189

cumulated, 190
Phillips–Ouliaris test, see Test
Polynomial
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characteristic, 57
Portmanteau test, see Test
Power of approximation, 228
Power transfer function, 167
Prediction, 6
Principle of parsimony, 99, 284
Process

autoregressive , 63
AR, 63
ARCH, 91
ARIMA, 80
ARMA, 74
autoregressive moving aver-

age, 74
cosinoid, 112
GARCH, 93
Gaussian, 101
general linear, 49
MA, 61
Markov, 114
SARIMA, 81
SARMA, 81
stationary, 49
stochastic, 47

Product filter, see Filter
Protmanteau test, 320

R2, 15
Random walk, 81, 114
Real part

of a complex number, 47
Residual, 6, 316
Residual sum of squares, 105, 139

SARIMA-process, see Process
SARMA-process, see Process
Scale, 91
SCAN-method, 303

Seasonally adjusted, 16
Simple moving average, see Mov-

ing average
Slope, 13
Slutzky’s lemma, 218
Spectral

density, 159, 162
of AR-processes, 176
of ARMA-processes, 175
of MA-processes, 176

distribution function, 161
Spectrum, 159
Square integrable, 47
Squared canonical correlations,

304
Standard case, 89
State, 121

equation, 121
State-space

model, 121
representation, 122

Stationarity condition, 64, 75
Stationary process, see Process
Stochastic process, see Process
Strict stationarity, 245

Taylor series expansion in prob-
ability, 261

Test
augmented Dickey–Fuller, 83
Bartlett–Kolmogorov–Smirnov,

192, 332
Box–Ljung, 107
Box–Pierce, 106
Dickey–Fuller, 83, 86, 87, 276
Fisher for hidden periodici-

ties, 191, 332
Phillips–Ouliaris, 83
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Phillips–Ouliaris for cointe-
gration, 89

Portmanteau, 106, 319
Tight, 259
Time domain, 135
Time series

seasonally adjusted, 21
Time Series Analysis, 1
Transfer function, see Function
Trend, 2, 16
Tukey–Hanning kernel, see Ker-

nel

Uniform distribution, see Distri-
bution

Unit root, 86
test, 82

Variance, 47
Variance stabilizing transforma-

tion, 40
Volatility, 90

Weights, 16, 17
White noise, 49

spectral density of a, 164

X–11 Program, see Census
X–12 Program, see Census

Yule–Walker
equations, 68, 71, 226
estimator, 250
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| |, 8
*, 4
;, 4
@@, 37
$, 4
%MACRO, 316, 332
%MEND, 316
FREQ , 196
N , 19, 39, 96, 138, 196

ADD, 23
ADDITIVE, 27
ADF, 280
ANGLE, 5
ARIMA, see PROC
ARMACOV, 118, 316
ARMASIM, 118, 220
ARRAY, 316
AUTOREG, see PROC
AXIS, 5, 27, 37, 66, 68, 175, 196

C=color, 5
CGREEK, 66
CINV, 216
CLS, 309, 323
CMOVAVE, 19
COEF, 146
COMPLEX, 66
COMPRESS, 8, 80
CONSTANT, 138
CONVERT, 19

CORR, 37

DATA, 4, 8, 96, 175, 276, 280,
284, 316, 332

DATE, 27
DECOMP, 23
DELETE, 32
DESCENDING, 276
DIF, 32
DISPLAY, 32
DIST, 98
DO, 8, 175
DOT, 5

ESACF, 309
ESTIMATE, 309, 320, 332
EWMA, 19
EXPAND, see PROC

F=font, 8
FIRSTOBS, 146
FORECAST, 319
FORMAT, 19, 276
FREQ, 146
FTEXT, 66

GARCH, 98
GOPTION, 66
GOPTIONS, 32
GOUT, 32
GPLOT, see PROC
GREEK, 8
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GREEN, 5
GREPLAY, see PROC

H=height, 5, 8
HPFDIAG, see PROC

I=display style, 5, 196
ID, 19
IDENTIFY, 37, 74, 98, 309
IF, 196
IGOUT, 32
IML, 118, 220, see PROC
INFILE, 4
INPUT, 4, 27, 37
INTNX, 19, 23, 27

JOIN, 5, 155

L=line type, 8
LABEL, 5, 66, 179
LAG, 37, 74, 212
LEAD, 132, 335
LEGEND, 8, 27, 66
LOG, 40

MACRO, see %MACRO
MDJ, 276
MEANS, see PROC
MEND, see %MEND
MERGE, 11, 280, 316, 323
METHOD, 19, 309
MINIC, 309
MINOR, 37, 68
MODE, 23, 280
MODEL, 11, 89, 98, 138
MONTHLY, 27

NDISPLAY, 32
NLAG, 37
NLIN, see PROC

NOEST, 332
NOFS, 32
NOINT, 87, 98
NONE, 68
NOOBS, 4
NOPRINT, 196

OBS, 4, 276
ORDER, 37
OUT, 19, 23, 146, 194, 319
OUTCOV, 37
OUTDECOMP, 23
OUTEST, 11
OUTMODEL, 332
OUTPUT, 8, 73, 138

P (periodogram), 146, 194, 209
PARAMETERS, 11
PARTCORR, 74
PERIOD, 146
PERROR, 309
PHILLIPS, 89
PI, 138
PLOT, 5, 8, 96, 175
PREFIX, 316
PRINT, see PROC
PROBDF, 86
PROC, 4, 175

ARIMA, 37, 45, 74, 98, 118,
120, 148, 276, 280, 284,
309, 319, 320, 323, 332,
335

AUTOREG, 89, 98
EXPAND, 19
GPLOT, 5, 8, 11, 32, 37, 41,

45, 66, 68, 73, 80, 85, 96,
98, 146, 148, 150, 179, 196,
209, 212, 276, 284, 316,
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319, 332, 335
GREPLAY, 32, 85, 96
HPFDIAG, 87
IML, 316
MEANS, 196, 276, 323
NLIN, 11, 41
PRINT, 4, 146, 276
REG, 41, 138
SORT, 146, 276
SPECTRA, 146, 150, 194, 209,

212, 276, 332
STATESPACE, 132, 133
TIMESERIES, 23, 280
TRANSPOSE, 316
X11, 27, 42, 44

QUIT, 4

R (regression), 88
RANNOR, 44, 68, 212
REG, see PROC
RETAIN, 196
RHO, 89
RUN, 4, 32

S (spectral density), 209, 212
S (studentized statistic), 88
SA, 23
SCAN, 309
SEASONALITY, 23, 280
SET, 11
SHAPE, 66
SM, 88
SORT, see PROC
SPECTRA,, see PROC
STATESPACE, see PROC
STATIONARITY, 89, 280
STEPJ (display style), 196
SUM, 196

SYMBOL, 5, 8, 27, 66, 155, 175,
179, 196

T, 98
TAU, 89
TC=template catalog, 32
TDFI, 94
TEMPLATE, 32
TIMESERIES, see PROC
TITLE, 4
TR, 88
TRANSFORM, 19
TRANSPOSE, see PROC
TREPLAY, 32
TUKEY, 212

V= display style, 5
VAR, 4, 132, 146
VREF, 37, 85, 276

W=width, 5
WEIGHTS, 209
WHERE, 11, 68
WHITE, 32
WHITETEST, 194

X11, see PROC

ZM, 88
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Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual,
textbook, or other functional and useful docu-
ment “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either
commercially or noncommercially. Secondarily,
this License preserves for the author and pub-
lisher a way to get credit for their work, while
not being considered responsible for modifica-
tions made by others. This License is a kind of
“copyleft”, which means that derivative works
of the document must themselves be free in the
same sense. It complements the GNU General
Public License, which is a copyleft license de-
signed for free software.
We have designed this License in order to use
it for manuals for free software, because free
software needs free documentation: a free pro-
gram should come with manuals providing the
same freedoms that the software does. But this
License is not limited to software manuals; it
can be used for any textual work, regardless of
subject matter or whether it is published as a
printed book. We recommend this License prin-
cipally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other
work, in any medium, that contains a notice
placed by the copyright holder saying it can
be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that
work under the conditions stated herein. The
“Document”, below, refers to any such manual
or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the li-
cense if you copy, modify or distribute the work
in a way requiring permission under copyright
law.
A “Modified Version” of the Document
means any work containing the Document or a
portion of it, either copied verbatim, or with
modifications and/or translated into another
language.
A “Secondary Section” is a named appendix
or a front-matter section of the Document that
deals exclusively with the relationship of the
publishers or authors of the Document to the
Document’s overall subject (or to related mat-
ters) and contains nothing that could fall di-
rectly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics,

http://fsf.org/
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a Secondary Section may not explain any math-
ematics.) The relationship could be a matter of
historical connection with the subject or with
related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Sec-
ondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice
that says that the Document is released under
this License. If a section does not fit the above
definition of Secondary then it is not allowed to
be designated as Invariant. The Document may
contain zero Invariant Sections. If the Docu-
ment does not identify any Invariant Sections
then there are none.
The “Cover Texts” are certain short passages
of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that
the Document is released under this License. A
Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means
a machine-readable copy, represented in a for-
mat whose specification is available to the gen-
eral public, that is suitable for revising the doc-
ument straightforwardly with generic text edi-
tors or (for images composed of pixels) generic
paint programs or (for drawings) some widely
available drawing editor, and that is suitable for
input to text formatters or for automatic trans-
lation to a variety of formats suitable for input
to text formatters. A copy made in an other-
wise Transparent file format whose markup, or
absence of markup, has been arranged to thwart
or discourage subsequent modification by read-
ers is not Transparent. An image format is not
Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is
called “Opaque”.
Examples of suitable formats for Transparent
copies include plain ASCII without markup,
Texinfo input format, LaTeX input format,
SGML or XML using a publicly available
DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read
and edited only by proprietary word processors,
SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the

machine-generated HTML, PostScript or PDF
produced by some word processors for output
purposes only.
The “Title Page” means, for a printed book,
the title page itself, plus such following pages
as are needed to hold, legibly, the material this
License requires to appear in the title page. For
works in formats which do not have any title
page as such, “Title Page” means the text near
the most prominent appearance of the work’s ti-
tle, preceding the beginning of the body of the
text.
The “publisher” means any person or entity
that distributes copies of the Document to the
public.
A section “Entitled XYZ” means a named
subunit of the Document whose title either
is precisely XYZ or contains XYZ in paren-
theses following text that translates XYZ in
another language. (Here XYZ stands for a
specific section name mentioned below, such
as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To
“Preserve the Title” of such a section when
you modify the Document means that it re-
mains a section “Entitled XYZ” according to
this definition.
The Document may include Warranty Dis-
claimers next to the notice which states that
this License applies to the Document. These
Warranty Disclaimers are considered to be in-
cluded by reference in this License, but only as
regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may
have is void and has no effect on the meaning of
this License.

2. VERBATIM COPYING

You may copy and distribute the Document
in any medium, either commercially or non-
commercially, provided that this License, the
copyright notices, and the license notice say-
ing this License applies to the Document are
reproduced in all copies, and that you add no
other conditions whatsoever to those of this Li-
cense. You may not use technical measures to
obstruct or control the reading or further copy-
ing of the copies you make or distribute. How-
ever, you may accept compensation in exchange
for copies. If you distribute a large enough num-
ber of copies you must also follow the conditions
in section 3.
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You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in me-
dia that commonly have printed covers) of the
Document, numbering more than 100, and the
Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher
of these copies. The front cover must present the
full title with all words of the title equally promi-
nent and visible. You may add other material
on the covers in addition. Copying with changes
limited to the covers, as long as they preserve
the title of the Document and satisfy these con-
ditions, can be treated as verbatim copying in
other respects.
If the required texts for either cover are too vo-
luminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the ac-
tual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the
Document numbering more than 100, you must
either include a machine-readable Transparent
copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network
location from which the general network-using
public has access to download using public-
standard network protocols a complete Trans-
parent copy of the Document, free of added ma-
terial. If you use the latter option, you must
take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to en-
sure that this Transparent copy will remain thus
accessible at the stated location until at least
one year after the last time you distribute an
Opaque copy (directly or through your agents
or retailers) of that edition to the public.
It is requested, but not required, that you con-
tact the authors of the Document well before re-
distributing any large number of copies, to give
them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Ver-
sion of the Document under the conditions of
sections 2 and 3 above, provided that you re-
lease the Modified Version under precisely this
License, with the Modified Version filling the
role of the Document, thus licensing distribu-
tion and modification of the Modified Version
to whoever possesses a copy of it. In addition,
you must do these things in the Modified Ver-
sion:

A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Doc-
ument, and from those of previous versions
(which should, if there were any, be listed in
the History section of the Document). You
may use the same title as a previous ver-
sion if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or
more persons or entities responsible for au-
thorship of the modifications in the Modi-
fied Version, together with at least five of
the principal authors of the Document (all
of its principal authors, if it has fewer than
five), unless they release you from this re-
quirement.

C. State on the Title page the name of the
publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the
Document.

E. Add an appropriate copyright notice for
your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright
notices, a license notice giving the public
permission to use the Modified Version un-
der the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists
of Invariant Sections and required Cover
Texts given in the Document’s license no-
tice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”,

Preserve its Title, and add to it an item
stating at least the title, year, new authors,
and publisher of the Modified Version as
given on the Title Page. If there is no sec-
tion Entitled “History” in the Document,
create one stating the title, year, authors,
and publisher of the Document as given on
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its Title Page, then add an item describ-
ing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given
in the Document for public access to a
Transparent copy of the Document, and
likewise the network locations given in
the Document for previous versions it was
based on. These may be placed in the “His-
tory” section. You may omit a network lo-
cation for a work that was published at least
four years before the Document itself, or if
the original publisher of the version it refers
to gives permission.

K. For any section Entitled “Acknowledge-
ments” or “Dedications”, Preserve the Title
of the section, and preserve in the section
all the substance and tone of each of the
contributor acknowledgements and/or ded-
ications given therein.

L. Preserve all the Invariant Sections of the
Document, unaltered in their text and in
their titles. Section numbers or the equiv-
alent are not considered part of the section
titles.

M. Delete any section Entitled “Endorse-
ments”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be En-
titled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-
matter sections or appendices that qualify as
Secondary Sections and contain no material
copied from the Document, you may at your op-
tion designate some or all of these sections as in-
variant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s li-
cense notice. These titles must be distinct from
any other section titles.
You may add a section Entitled “Endorse-
ments”, provided it contains nothing but en-
dorsements of your Modified Version by various
parties—for example, statements of peer review
or that the text has been approved by an or-
ganization as the authoritative definition of a
standard.
You may add a passage of up to five words
as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of
the list of Cover Texts in the Modified Version.

Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the
Document already includes a cover text for the
same cover, previously added by you or by ar-
rangement made by the same entity you are act-
ing on behalf of, you may not add another; but
you may replace the old one, on explicit permis-
sion from the previous publisher that added the
old one.
The author(s) and publisher(s) of the Document
do not by this License give permission to use
their names for publicity for or to assert or im-
ply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other doc-
uments released under this License, under the
terms defined in section 4 above for modified
versions, provided that you include in the com-
bination all of the Invariant Sections of all of the
original documents, unmodified, and list them
all as Invariant Sections of your combined work
in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy
of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If
there are multiple Invariant Sections with the
same name but different contents, make the ti-
tle of each such section unique by adding at the
end of it, in parentheses, the name of the origi-
nal author or publisher of that section if known,
or else a unique number. Make the same adjust-
ment to the section titles in the list of Invariant
Sections in the license notice of the combined
work.
In the combination, you must combine any sec-
tions Entitled “History” in the various original
documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections En-
titled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the
Document and other documents released under
this License, and replace the individual copies
of this License in the various documents with
a single copy that is included in the collection,
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provided that you follow the rules of this License
for verbatim copying of each of the documents
in all other respects.
You may extract a single document from such a
collection, and distribute it individually under
this License, provided you insert a copy of this
License into the extracted document, and fol-
low this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents
or works, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the
copyright resulting from the compilation is not
used to limit the legal rights of the compilation’s
users beyond what the individual works permit.
When the Document is included in an aggregate,
this License does not apply to the other works in
the aggregate which are not themselves deriva-
tive works of the Document.
If the Cover Text requirement of section 3 is ap-
plicable to these copies of the Document, then
if the Document is less than one half of the en-
tire aggregate, the Document’s Cover Texts may
be placed on covers that bracket the Document
within the aggregate, or the electronic equiva-
lent of covers if the Document is in electronic
form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification,
so you may distribute translations of the Doc-
ument under the terms of section 4. Replac-
ing Invariant Sections with translations requires
special permission from their copyright holders,
but you may include translations of some or
all Invariant Sections in addition to the orig-
inal versions of these Invariant Sections. You
may include a translation of this License, and
all the license notices in the Document, and any
Warranty Disclaimers, provided that you also
include the original English version of this Li-
cense and the original versions of those notices
and disclaimers. In case of a disagreement be-
tween the translation and the original version of
this License or a notice or disclaimer, the origi-
nal version will prevail.

If a section in the Document is Entitled “Ac-
knowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Ti-
tle (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or dis-
tribute the Document except as expressly pro-
vided under this License. Any attempt other-
wise to copy, modify, sublicense, or distribute it
is void, and will automatically terminate your
rights under this License.
However, if you cease all violation of this Li-
cense, then your license from a particular copy-
right holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and
finally terminates your license, and (b) perma-
nently, if the copyright holder fails to notify you
of the violation by some reasonable means prior
to 60 days after the cessation.
Moreover, your license from a particular copy-
right holder is reinstated permanently if the
copyright holder notifies you of the violation by
some reasonable means, this is the first time you
have received notice of violation of this License
(for any work) from that copyright holder, and
you cure the violation prior to 30 days after your
receipt of the notice.
Termination of your rights under this section
does not terminate the licenses of parties who
have received copies or rights from you under
this License. If your rights have been termi-
nated and not permanently reinstated, receipt
of a copy of some or all of the same material
does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new,
revised versions of the GNU Free Documenta-
tion License from time to time. Such new ver-
sions will be similar in spirit to the present ver-
sion, but may differ in detail to address new
problems or concerns. See http://www.gnu.
org/copyleft/.
Each version of the License is given a distin-
guishing version number. If the Document spec-
ifies that a particular numbered version of this
License “or any later version” applies to it, you
have the option of following the terms and con-
ditions either of that specified version or of any
later version that has been published (not as a

http://www.gnu.org/copyleft/
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draft) by the Free Software Foundation. If the
Document does not specify a version number of
this License, you may choose any version ever
published (not as a draft) by the Free Software
Foundation. If the Document specifies that a
proxy can decide which future versions of this
License can be used, that proxy’s public state-
ment of acceptance of a version permanently au-
thorizes you to choose that version for the Doc-
ument.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or
“MMC Site”) means any World Wide Web
server that publishes copyrightable works and
also provides prominent facilities for anybody
to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Mas-
sive Multiauthor Collaboration” (or “MMC”)
contained in the site means any set of copy-
rightable works thus published on the MMC
site.
“CC-BY-SA” means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copy-
left versions of that license published by that
same organization.
“Incorporate” means to publish or republish a
Document, in whole or in part, as part of an-
other Document.
An MMC is “eligible for relicensing” if it is li-
censed under this License, and if all works that
were first published under this License some-
where other than this MMC, and subsequently
incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1,
2008.
The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on

the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License
for your documents

To use this License in a document you have writ-
ten, include a copy of the License in the docu-
ment and put the following copyright and license
notices just after the title page:

Copyright © YEAR YOUR NAME. Per-
mission is granted to copy, distribute
and/or modify this document under the
terms of the GNU Free Documentation
License, Version 1.3 or any later ver-
sion published by the Free Software Foun-
dation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover
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