=7 [T4un
o WURZBURG , SCAN

16th GAMM-IMACS International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics
September 21-26, 2014 P e ——

AN g

ond 13 = .":,‘“ e p

Algorithmic and Software Challenges at
Extreme Scales

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

9/23/14

0. Performance Development of HPC over
“ the Last 22 Years from the Top500

1 Eflop/s; TopS00 Today:

. 274 PFI
S Intel processors are in 87% of the, /s
" Top500 computers followed by AMD, 6%.
10piopss X806 In 93% of the systems. 33.9 PFlop/s
1 Pflop/s
SUM
100 Tflop/s "‘?34 TFlop/
/_ff op/s
10 Tflop/s p A“"’/
A/‘///
/‘/
1 Tflop/s -
1.17 TFlop/s Pz :
100 Gflop/s /,/ My Laptop 70 Gflop/s
0 cflon/ “59.7 GFlop/s //,ff" +
P e My iPad Air (4 Gflop/s)

1 Gflop/s //"
/A
~
100 Mflop/s 400 MFlop/s

That same iPad has a storage capacity rivaling
the text-based content of a major research library.

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

~ June 2014: The TOP 10 Systems

. Rmax | 7% of|| Power IMF/ops
Rank Site Computer Country Cores [Pflops] | Peak|| mw] ||/ Watt
National Super Tianhe-2 NUDT,
1 Computer Center in | Xeon 12C 2.26Hz + IntelXeon 3,120, 33.9 62 17.8 || 1905
Guangzhou [+ e
DOE / 0s Titan, Cray XK7 (16C) + Nvidia | e
2 Oak Ridge Nat Lab Kepler GPU (14c) + Custom [&= LG oo &2 b | |
DOE / NNSA Sequoia, BlueGene/Q (16c¢)
3 L Livermore Nat Lab + custom 1,572, 86J 17.2 85 7.9 || 2063
RIKEN Advanced Inst K computer Fujitsu SPARC64
5 for Comp Sci VIIIfx (8c) + Custom 705,024 | 10.5 | 93 IS
DOE / Os Mira, BlueGene/Q (16¢c)
? Argonne Nat Lab + Custom Qe S || ot
. Piz Daint, Cray XC30, Xeon 8C +
6 Swiss €SCS Nvidia Kepler (14c) + Custom K#ﬂ 115,984 -’ 2.3 || 2726
Texas Advanced
/ Computing Center 4.5)1 1489
Forschungszentrum JUQUEEN, BlueGene/Q, :
8 | Juelich (FZJ) | Power BQC 16C 1.66Hz+Custom | PR 458.752 2.30 || 2178
DOE / NNSA Vulcan, BlueGene/Q, e e »/
J L Livermore Nat Lab| Power BQC 16C 1.6GHz+Custom ," v Ze HELEE 2 < || B
Cray XC30, . R
10 Government Xeon E5 12 2.76Hz, Custom "“20® -~ 225984 | 3.14 64
. w H
500 Meteorological Cray XC30 Germany 7280 134 91

s
o= Mixed Multi-GPU and Multi-Coprocessor Environments

node 1 ‘ node 2 node 3 node 4 node k ‘
e SSSSES

Network

Message Passing Interface

Hybrid & manycore
OpenMP, DMA, streaming,
manytasks...

] e

ed Core

socket ry [T
i : ontroller

accelerators: .

£L.

< Commodity plus Accelerator Today

. 192 Cuda cores/SMX
Commodity Accelerator (GPU) 2688 “Cuda cores”
Intel Xeon Nvidia K20X “Kepler” |
R raroc 2R88 “Cuda caorec”

RAN b 1/0 PClexs Infiniband

RAM CPU o= Hub PCle x16
RAM u GPU (6GB)

QP!
RAN I /0 aS22M o)) (6GB)

RAM CPU QPI PCle x16
S Hub

GPU (6GB)

A .
S Device Memory

erconnect

PCl-e Gen2/3 16 lane
4 Gb/s (8 GB/s)
1 GWi/s

- Ratio of Floating Point Speed to Memory

ICL

Bandwidth has Been Increasing 15-33% per Year

Computers are over previsioned for floating point
Would like Performance Ratio of flops to data movement of O(1)

>

o

e .

2 Machine balance (# flops per read)

E I I I / I

o .

G 100} . - _
3 ; .]
S . . "“« . . [xeonPhie |
2 sl e [Nvidia M20500 f{Core 17
= Cote g pee e T LS :

8 10 Q;O* Lo .:.;...:-','...- : . A
S S/ entiume -¥:7 - 7 L |
= ¢/ T

& el .

@)

.0

()

E &Ax-lilo /

S 0

.0

© 1975 1980 1985 1990 1995 2000 2005 2010 2015

ear
Data from Stream benchmark (McCalpin) and vendor info¥mation sheets

e Flops “free,”
memory expensive

e Good for dense,
BLAS-3 operations
(matrix multiply)

e Flops & memory
access balanced

e Good for sparse &
vector operations

Peak Performance - Per Core ok

FLOPS = cores x clock x

cycle
Floating point operations per cycle per core
+ Most of the recent computers have FMA (Fused multiple add): (i.e.
X <X + y*Z in one cycle)
+ Intel Xeon earlier models and AMD Opteron have SSE2
+ 2 flops/cycle DP & 4 flops/cycle SP
+ Intel Xeon Nehalem (‘og) & Westmere ('10) have AVX
+ 4 flops/cycle DP & 8 flops/cycle SP
+ Intel Xeon Sandy Bridge('11) & Ivy Bridge (‘22) have AVX
. + 8 flops/cycle DP & 16 flops/cycle SP —————

are @+ Intel Xeon Haswell ("13) & (Broadwell ("14)) AVX2
here

+ 16 flops/cycle DP & 32 flops/cycle SP

+ Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
+ Intel Xeon Skylake ('15)

+ 32 flops/cycle DL & 64 flops/cycle SP

Memory transfer

(Its All About Data Movement)
Example on my laptop: One level of memory

s 56 GFLOP/sec/core x 2 cores

intel'
inside” (Omitting latency here.)

ache
(6 MB)

Turbo Boost 3.5 GHz
25.6 GB/sec

CORE 'i7vPro“

Intel Core i7 4850HQ
Haswell, 2.3 GHz

Main memory

(8 GB)

The model IS simplified (see next slide) but it provides an upper bound on
performance as well. l.e., we will never go faster than what the model predicts.
(And, of course, we can go slower ...)

FMA: fused multiply-add

axpy: M T %W + | for (j=0;j<n;j++) n MUL
yli] +=a * x[i]; n ADD
2n FLOP
(without increment) n FMA
DOT: a <_ Y alpha = Oe+OO, n MUL
for (j=0;j<n;j++) n ADD
alpha +=x[i] * y[il; 2n FLOP
n FMA
(without increment)

Note: It is reasonable to expect the one loop codes shown here to perform as well as
their Level 1 BLAS counterpart (on multicore with an OpenMP pragma for example).

The true gain these days with using the BLAS is (1) Level 3 BLAS, and (2) portability.

Take two double precision vectors x and y of size
n=375,000. a <—

DOT:

Data size:

— (375,000 double) * (8 Bytes / double) = 3 MBytes
per vector

(Two vectors fit in cache (6 MBytes). OK.)

Time to move the vectors from memory to cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation of DOT:
— (2nflop)/ (56 Gflop/sec) = 0.01 ms

Vector Operations

total time >time_comm + time_comp
=0.23ms + 0.01ms = 0.24ms

1. The equation assumes that communication and computation do not
overlap. This assumption is not really true. For a AXPY (without INCX), a
nice streaming/pipeline occurs. Data locality is perfect.

2. We will assume overlapping communication and computation. We are
looking for a strict lower bound, and there is no need to second guessing
and make assumptions.

Vector Operations

total time > max (time_comm , time_comp)
=max (0.23ms, 0.01lms) =0.23ms

Performance for DOT < 3.2 Gflop/s
Peak is 56 Gflop/s

We say that the operation is communication
bounded. No reuse of data.

Level 1, 2 and 3 BLAS

Level 1 BLAS Matrix-Vector operations 2nfiop

— Q) y a — [
AXPY: M O‘| +| DOT:

2n memory reference
AXPY: 2n READ, n WRITE
DOT: 2n READ

RATIO: 1

N B OL- |
A

_evel 2 BLAS Matrix-Vector operations

2nZ FLOP
n2 memory references

RATIO: 2

GEMM: n
C — a A +B C

_evel 3 BLAS Matrix-Matrix operations

2n3 FLOP
3n2 memory references
3n2READ, n2 WRITE

RATIO: 2/3 n

Take two double precision vectors x and y of size

n=500.

GEMM: — a +B
ﬂ
Data size:

— (500% double) * (8 Bytes / double) = 2 MBytes per
matrix

(Three matrices fit in cache (6 MBytes). OK.)

Time to move the matrices in cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation in GEMM:
— (2n3flop) / (4.4 Gflop/sec) = 4.46 ms

Matrix Matrix Operations

total_time = max (time_comm , time_comp)
= max(0.23ms, 4.46ms) = 4.46ms

For this example, communication time is less than 6% of the
computation time.

There is a lots of data reuse in a GEMM; 2/3n per data element. Has
good temporal locality.

If we assume total _time = time_comm +time_comp, we get
performance for GEMM = 53.3 Gflop/sec

(Out of 56 Gflop/sec possible, so that would be 95% peak performance
efficiency.)

Level 1, 2 and 3 BLAS

I core Intel Haswell 17-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);
Peak = 56 Gflop/s

60
= — @

50
=
o 40 =@~dgemm Level-3 BLAS
G =#=dgemv Level-2 BLAS
§ 30 =o-daxpy Level-1 BLAS
©
£
£ 20
2"
a

10 / 3.4 Gflop/s

o — g 16 Glonks
0 | | | ‘?j | # | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix (Vector) Size N

I core Intel Haswell 17-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz

6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56 Gflop/s per core.
Compiled with gcc and using Veclib

Issues

e Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column Divide by Schur Next Step
with Level 1 Pivot complement
BLAS row update

(Rank 1 update)

Main points
» Factorization column (zero) mostly sequential due to memory bottleneck
« Level 1 BLAS
» Divide pivot row has little parallelism
« Rank -1 Schur complement update is the only easy parallelize task
» Partial pivoting complicates things even further
* Bulk synchronous parallelism (fork-join)
* Load imbalance
» Non-trivial Amdahl fraction in the panel
» Potential workaround (look-ahead) has complicated implementation

The Standard LU Factorization LAPACK
1980’°s HPC of the Day: Cache Based SMP

% %
OO OO
e 000000 ® 000000000

atatatatatatatotadoatatatata atatatatatatatatatatototat

seessveeveese Sesesaeeieveese

OO0 ottt tatatatodototatatated

atatatatsl

atatatatsl
Factor panel Triangular Schur Next Step
with Level 1,2 update complement
BLAS update

Main points
« Panel factorization mostly sequential due to memory bottleneck
« Triangular solve has little parallelism
« Schur complement update is the only easy parallelize task
« Partial pivoting complicates things even further
» Bulk synchronous parallelism (fork-join)
» Load imbalance
* Non-trivial Amdahl fraction in the panel
« Potential workaround (look-ahead) has complicated implementation

e Last Generations of DLA Software

LINPACK (70's)
(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScalLAPACK (90's)
(Distributed Memory)

2D Block Cyclic Layout

Software/Algorithms follow hardware evolution in time

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

|| Proces: oint of view
0(0|0

w](~]
o || s =
2

noilE
w](~]
o][+]

[e]=]l=]~
|][][o

|][][o
|1]

I
|

ofl=|loff=lloff=|lof-=|o 3
B
1 E3(0Y E3(0Y E3 (Y ISR+
=5
o,
Slo | s flofs o flo]ls |2

Parallelization of LU and QR.

“ Parallelize the update:
— « Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.
» Can be done efficiently with LAPACK+multithreaded BLAS

\Y W/

dgetf2
I‘— Iu(I) l
A7 INN
dtrsm (+ dswp)
l l l l l Fork - Join parallelism
R Y — ' ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm

O-m1=
N7

o
<« Synchronization (in LAPACK LU)

GETF2 ﬂ » fork jOin
(Facior a panel | » bulk synchronous processing

!
l

/\

1111

>

1111

PLASMA LU Factorization

Dataflow Driven

A

ICLLr"

Numerical program generates tasks and

run time system executes tasks respecting

data dependences.

=

2

e

—

X
ssessfeeces
ssassfeess
00000100000
ssessfeeees
ssassfeess
00000 00000
sssssfeeces
22222122222
R
ssassfeess
0000000000

&

< Data Layout is Critical

Y

" Tile data layout where each data
tile is contiguous in memory

" Decomposed into several fine-
grained tasks, which better fit the
memory of the small core caches

PLASMA: Tile Algorithms and
Nested Parallelism

Operates on one, two, or three matrix tiles at a time using a
single core

— This is called a kernel; executed independently of other kernels
— Mostly Level 3 BLAS are used

Data flows between kernels as prescribed by the programmer

Coordination is done transparently via runtime scheduler
(QUARK)

— Parallelism level adjusted at runtime
— Look-ahead adjusted at runtime

Uses single-threaded BLAS with all the optimization benefits
Panel is done on multiple cores

“~ Run Time System - QUARK

" A runtime environment for the
dynamic execution of

precedence-constraint tasks
(DAGs) in a multicore machine
» Translation

> If you have a serial program that
consists of computational kernels
(tasks) that are related by data
dependencies, QUARK can help you
& execute that program (relatively
efficiently and easily) in parallel on
a multicore machine

26

{\
<-QUARK

Shared Memory Superscalar Scheduling

FOR k =0..TILES-1 Ty
ALKIK] < DPOTRF(AIKIIK]) definition — pseudocode

FOR m = k+1..TILES-1
A[m][K] < DTRSM(A[k][k] A[m][K])
FOR m =k+1..TILE
A[m][m] < DSYRK(A[m][k] A[m][m])
FOR n = k+1..m-1
A[m][n] <~ DGEMM(A[m][K], A[n][k], A[m][n])

ICL

The Purpose of QUARK’s Runtime

"Objectives

“Methodology

> High utilization of each core
> Scaling to large number of cores P
» Synchronization reducing algorithms

> Dynamic DAG scheduling (QUARK)
> Explicit parallelism

> Implicit communication

> Fine granularity / block data layout

"Arbitrary DAG with dynamic SCthUling

DAG scheduled
parallelism

Vir

Fork-join parallelism
Notice the synchronization

penalty in the presence of
heterogeneity.

28

‘ @@I@Q,L,
/@S ‘égzzae &&*

£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BAEATS Rt oo
i I mm e .'.'.'.h... 1 1 |?I“

A i

| u |] oo

<. $t2' R
o

'hLI L o o D O

i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (71-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)

“ Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax rather
than x.

S (xi)

S (xi)

: - J()
30 17(x:)30

Xi+1 = Xj —

{\
< |deas Have Been Used

» Systems of Equations
* Symmetric Eigenvalue Problem

* General Eigenvalue Problem

= Numerical issues with non-linear
elementary divisors

 Singular Value Decomposition

- Large Sparse Problems
= [terative methods
= Communication Avoiding GMRES

N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the

correction using high precision. 30

N
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n?
r=>b- Ax o(n?)
WHILE || r || not small enough
z = L\(U\r) o(n?)
X=X+2Z o(n’)
r=b- Ax o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

ICL

‘Mixed-Precision lterative Refinement

Iterative refinement for dense systems, Ax = b, can work this
way.

L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=X+2Z DOUBLE o(n’)
r=>b- Ax DOUBLE o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108) 34

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600

1400 =4SP Solve

1200
-
1000 DP Solve

800

GFlop/s

600

400

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

200

0

D A O A QO O O N M O
X O N9 O O O O O O
F S S & F S

Matrix size 35

N
~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600
/+SP Solve

1400

/ <=-DP Solve (MP
1200 / lter.Ref.)
1000 /}(/{ <%-DP Solve
800 /y
600
400 GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
200 CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

GFlop/s

O ! ! ! ! ! ! ! ! ! 1

D N O 4 O O O O N O
X S N O O O O O O O
F S S &S

Matrix size

5(-)

Mixed-precision QR
and its application to CA-
GMRES(s)

o Sparse lterative Method

A

IcLor- Mixed-precision QR
and its application to CA-GMRES: TSQR: Tall-Skinny QR

« Orthogonalizes a set of dense columns vectors V (m-by-s, m > s),

-][N
_R

where Q is a set of orthogonal vectors, and R is upper triangular

= important computational kernels:
« iterative subspace projection methods for solving large linear systems or eigenvalue problems

* solution of over-determined least square problem,
x:=argmin||Ay=b || withm>>n.
XeR,

* projection methods for low-rank approximation, eigen/singular problems

“ TSQR Algorithms

« Many ways to compute TSQR:
= Householder QR (with O(s) reductions)

« Householder transform each column based on BLAS-1,2 xGEQR2

Modified Gram-Schmidt (with O(s?) reductions)

« ortho each column against each column based on BLAS-1 xDOT and xAXPY

Classical Gram-Schmidt (with O(s) reductions)
« ortho each column against prev columns based on BLAS-2 xGEMV

Cholesky QR (or SVQR) (with O(1) reductions)
« ortho all columns against prev columns based on BLAS-3 xGEMM, xTRSM

CAQR (with O(1) reductions)

« ortho all columns against prev columns based on tree-reduction BLAS-1,2 xGEQR2

el
““CholQR factorization for TSQR

« Step 1 Gram-matrix formation B := VTV (ns?/2 ops on GPUs)
« Step 2 Cholesky factorization R'R:=B (s®/6 ops on CPUs)
 Step 3 Backward-substitution Q:=VR™

~100,000

~10
~10 . =
B V'’

\'

Step 1: Block dot-products
~100,000 | |

= Most of flops using BLAS-3
= Only one global reduction

::.
B

R R

Step 2: Cholesky factorization

(ns?/2 ops on GPUs)

Q

N

R

Step 3: Triangular solve

.
ICL
(16-core Sandy Bridge with three M2090 Fermi, s = 30)
TSQR Performance on 1 GPU TSQR Performance on 3 GPUs
110 T T T 300 T =
100 1
o0l —5—CholQR || 250 —B—CholQR }
—7—SVQR —7— SVQR
80+ —©—-CGS —6—-CGS
n CAQR » 200F CAQR
3 70 —A—MGS 3 —A—MGS
S —%—LAPACK 2 —%—LAPACK
G 60 d B
o o 150
2 50f =
ks ks
m 4o W 100t N e e e o
30 o—6—"2 © S/ S S © 0. @/e/@/e/%’v © < ~
20 [50 L
10 ¢ A A A A A A A A ” * vae XX A A S £)
. jEm 1 ﬂ %/_A—’T o N
100K 500K 1000K 100K 500K 1000K

= CholQR shows superior performance based on BLAS-3

Number of Rows (n)

Number of Rows (n)

= performance depends more on intra-comm (BLAS performance) than on inter-comm.

it scales well over 3 GPUs.

6
TSQR Stability

 Trade-off between performance and stability

= CholQR performs most of computation using BLAS-3

= Condition number of Gram matrix B is square of A

|l — QTQH # flops, GPU kernel # GPU-CPU comm.
MGS O(ex(V)) 2ns¢, BLAS-1 xDOT O(s?)
CGS O(ex(V)?) | 2ns?, BLAS-2 xGEMV O(s)
CholQR | O(ex(V)?) 2ns?, BLAS-3 xGEMM O(1)
SVQR O(ex(V)?) 2ns?, BLAS-3 xGEMM O(1)
CAQR | O(e) 4ns?, BLAS-1,2 xGEQR2 0(1)

* |t pften requires reorthogonalization
« CA-GMRES may not converge

{ A
Mixed Precision CholQR

* Remove “square” in error bound by selectively using “extended”
precision:

Step 1 Gram-matrix formation B := VTV (V in double)16x ops on GPUs in extended-precision
Step 2 Cholesky factorization R™ R := B 16x ops on CPUs in extended-precision

Step 3 Backward-substitution Q := VR™" on 1x ops on GPUs in working-precision

10 ~100,000
~10 . = : : = . = i’
B B B

v’ R R R™

Step 1: Block dot-products 100 O(}g Step 2: Cholesky factorization Q \

Step 3: Triangular solve

orthogonality error depends linearly on k(V) (more details in SISC paper,
submitted, underreview)

I1-QT Q|| <O(ek(V)+(ek(V))?) and || Q|| <1+ O(ek(V))
arithmetic instruction count increases by 8.5

ICL

CA-GMRES with dd-CholQR

G3_circuit with CA-GMRES(10,10), single
T T T T

cant with CA-GMRES(30,60), double shipsec1 with CA-GMRES(30,60), double
T T T T 1.2 T T T T

1.2 T T 2.6 T
W Spv I SpMv | sV ||
[BOrth [BOrth 25 9:68(150) [BOrth
I TSGR || 1k I TSQR || I TSQR ||

11.57 (166)

11.30 (166)

T 2.80 (82)

2.34 (48)

o

N
o
N

1.84 (50)

o
o
T

410(148)

Normalized Time
o o ¢
(¢, (<]
T T T
Normalized Time

Normalized Time

o
o
T

3.93 (151)

I
~
o
~
T

2.68 (148) 2.64 (148) |

o
w
T
14
w
T

o
N

o
S

o
o

0 0 0
GMRES d-GEMM dd-GEMM d-SYRK dd-SYRK GMRES d-GEMM dd-GEMM d-SYRK dd-SYRK GMRES s-GEMM ss-GEMM s-SYRK ss-SYRK

Total algorithm time to solution is reduced by > 40%

Reorthogonalization is not needed (error depends linearly on k(V)).

= latency is reduced in half
= total TSQR time may not increase, or may be reduced (dd 1.7x slower).

CA-GMERS may converge quicker

= solution time may be reduced.

Gflop/s

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

LE+02 + /-

1.E+01

1.E+00

TopS500 List 43 Edition

Tflop/s Pflop/s

Jun'97 Jun'08 Jun'14

10

toSSOO Iist30numbe4

r

Rpeak

""""" Extrap Peak

Rmax

""""" Extrap Max

Gflop/s

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00

Top500 List 53 Edition

Tflop/s Pflop/s

Eflop/s

Jun'9?7 Jgn{'OS Jun'l4 Jt%n'19

<€

/F RE

10

toSSOO Iistwnumbe4

r

50

60

Rpeak
""""" Extrap Peak
Rmax

......... EXtrap Max

[] [)
< Problem with Multicore
2Tbps HBM

NVM/Flash 4~6HBM Channels | NVM/Flash |
k NV Flash 2TB/s DRAM & M/Flash a|
[NVM/Elabh | NVM BW | NVM/Flash |

D] | DRAM
o 30PB/s I/O BW Possible I Y]
l DqumM] 1 Yottabyte / Year o |
[Low PowerICRU] High Powered Main CPU [T g€'|

202020 12020:0:0:0=R 0101010 2R 01010 R O mm 0101010 B 2)2 0)2¢ 1202020202024

T ol TRHEReR T |

e Next generation will be
more integrated, 3D
design with a photonic w vl =
network e B

)

A
ICL

Today’s #1 System

Tianhe-2

System peak 55 Pflop/s
Power 18 MW
(3 Gflops/W)
System memory 1.4 PB
(1.024 PB CPU + .384 PB CoP)
Node performance 3.43 TF/s
(.4 CPU +3 CoP)
Node concurrency 24 cores CPU +
171 cores CoP
Node Interconnect BW 6.36 GB/s
System size (nodes) 16,000
Total concurrency 3.12 M

12.48M threads (4/core)

MTTF Few / day

¢ Exascale System Architecture
~ with a cap of $200M and 20MW

Tianhe-2

System peak 55 Pflop/s
Power 18 MW
(3 6flops/W)
System memory 1.4 PB
(1.024 PB CPU +.384 PB CoP)
Node performance 3.43 TF/s
(4 CPU +3 CoP)
Node concurrency 24 cores CPU +
171 cores CoP
Node Interconnect BW 6.36 GB/s
System size (nodes) 16,000
Total concurrency 3.12 M

12.48M threads (4/core)

MTTF Few / day

¢ Exascale System Architecture
~ with a cap of $200M and 20MW

Systems 2014 Difference
Tianhe-2 Today & Exa

System peak 55 Pflop/s 1 Eflop/s ~20x
[Power 18 MW ~20 MW 0o(1)
(3 Gflops/W) (50 Gflops/W) ~15x
System memory 1.4 PB 32 -64PB ~50x
(1.024 PB CPU + .384 PB CoP)
Node performance 3.43 TF/s 1.2 or 15TF/s 0o(1)
(.4 CPU +3 CoP)
Node concurrency 24 cores CPU + O(1k) or 10k ~Bx - ~50x
171 cores CoP
Node Interconnect BW 6.36 GB/s 200-4006B/s ~40x
System size (nodes) 16,000 O(100,000) or O(1IM) ~6x - ~60x
Total concurrency 312 M O(billion) ~100x

12.48M threads (4/core)

MTTF Few / day Many / day 0o(?)

Exascale in the USA
not until 2022

DOE Facilities have a fixed 4-5 year cadence
Present Roadmap for Largest US supercomputers 2012 - 2022

2022 CORAL-2 1000 PF

2019 Trinity-2 250-300 PF

2017 CORAL 100-200 PF

2015 Trinity 60 PF
2012 Titan 26 PF and Sequoia 20PF

Power constraints of 20-30 MW facilities

and pay-off schedules of 4 year leases

limit accelerating this Roadmap to 2020.

e

<~ Top 10 Challenges to Exascale

In a recent report U.S. Department
of Energy identified ten research
challenges (Google "Top 10 Challenges to Exascale”)

TOp Ten Exa Scale ASCAC Subcommittee for the Top Ten Exascale Research Challenges
Research Challenges

Subcommittee Chair
Robert Lucas (University of Southern California, Information Sciences Institute)

Subcommittee Members

James Ang (Sandia National Laboratories)
Keren Bergman (Columbia University)
Shekhar Borkar (Intel)

William Carlson (Institute for Defense Analyses)
Laura Carrington (UC, San Diego)
George Chiu (IBM)

Robert Colwell (DARPA)

William Dally (NVIDIA)

Jack Dongarra (U. Tennessee)

Al Geist (ORNL)

Gary Grider (LANL)

Rud Haring (IBM)

Jeffrey Hittinger (LLNL)

Adolfy Hoisie (PNLL)

Dean Klein (Micron)

Peter Kogge (U. Notre Dame)

Richard Lethin (Reservoir Labs)

Vivek Sarkar (Rice U.)

Robert Schreiber (Hewlett Packard)
John Shalf (LBNL)

A, Thomas Sterling (Indiana U.)

h Rick Stevens (ANL)

&

A
ICL

Top 10 Challenges to Exascale

3 Hardware, 4 Software, 3 Algorithms/Math Related

Energy efficiency:

> Creating more energy efficient circuit,
power, and cooling technologies.

Interconnect technology:

> Increasing the performance and energy
efficiency of data movement.

Memory Technology:

> Integrating advanced memory

technologies to improve both capacity
and bandwidth.

Scalable System Software:

> Developing scalable system software
that is power and resilience aware.

Programming systems:

> Inventing new programming
environments that express massive
parallelism, data locality, and resilience

Data management:

Creating data management software that
can handle the volume, velocity and
diversity of data that is anticipated.

Scientific productivity:

Increasing the productivity of
computational scientists with new software
engineering tools and environments.

Exascale Algorithms:

Reformulating science problems and
refactoring their solution algorithms for
exascale systems.

Algorithms for discovery,
design, and decision:

Facilitating mathematical optimization and
uncertainty quantification for exascale
discovery, design, and decision making.

Resilience and correctness:

algorithm verification challenges.

Ensuring correct scientific computation in
face of faults, reproducibility, and

& | Apphed Math @ Report Recommendations

ICL

Exascale « DOE should proceed expeditiously and with
high priority with an exascale math initiative.

March 2014

Applied Mathematics Research - Asignificant new investment in research and
for Exascale Computing development of new models, discretizations,

and algorithms implemented in new science
application codes is required at exascale.

* Not all problems require exascale
computation, and yet these problems will
continue to require applied mathematics
research.

 Anintensive co-design effort is essential for
success, where computer scientists, applied
mathematicians, and application scientists
work closely together to produce a
computational science discovery
environment.

U5 Depariment o Enery DOE must make investments to increase the
O Sl Coraid Wik i tad A pool of computational scientists and

mathematicians trained in both applied
Google “doe applied math exascale” mathematics and high-performance

computing.

http://tiny.cc/hpc

TOP300

- In 1986 Hans Meuer started a list of
supercomputer around the world, they were
ranked by peak performance.

- Hans approached me in 1992 to put together
our lists into the “TOP500”.

- The first TOP500 list was in June 1993.

®
200

SUPERCOMPUTER SITES

Rank Site System Cores Rmax (GFlopis) Rpeak (GFlop/s) Power (kW)

€D Los Alamos National Laboratory CM-5/1024 1,024 59.7 131.0
United States Thinking Machines Corporation

o Minnesota Supercomputer Cantear CM-5/544 544 304 636
United States Thinking Machines Corporation

€ National Security Agency CM-5/512 512 30.4 65.5
United States Thinking Machines Corporation

© ncsa CM-5/512 512 30.4 65.5
United States Thinking Machines Corporation

© nec SX-3/44R] 232 258
Japan NEC

o Atmospheric Environment Service (AES) SX-3/44 4 20.0 220

HPL - Bad Things

LINPACK Benchmark is 37 years old
TOP500 (HPL) is 22 years old

Floating point-intensive performs O(n3) floating point
operations and moves O(n?) data.

No longer so strongly correlated to real apps.

Reports Peak F|OpS (although hybrid systems see only 1/2 to 2/3 of Peak)
Encourages poor choices in architectural features
Overall usability of a system is not measured

Used as a marketing tool

Decisions on acquisition made on one number
Benchmarking for days wastes a valuable resource

http://tiny.cc/hpcg

Proposal: HPCG

High Performance Conjugate Gradient (HPCG).
Solves Ax=b, A large, sparse, b known, x computed.

An optimized implementation of PCG contains essential
computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

Patterns:
Dense and sparse computations.
Dense and sparse collective.
Multi-scale execution of kernels via MG (truncated) V cycle.
Data-driven parallelism (unstructured sparse triangular solves).

Strong verification and validation properties (via spectral
properties of PCGQG).

Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).

- Single DOF heat diffusion model.

- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain: (n,xn,xn,)

- Process layout; (P, xnp, xnp.)

- Global domain: (. *np)x(n,*np)x(n,*np,)
- Sparse matrix:

- 27 nonzeros/row interior.
- 7/ — 18 on boundary.
- Symmetric positive definite.

27-point stencil operator

S mwusivcgme
HPL vs. HPCG: Bookends

- Some see HPL and HPCG as “bookends” of a spectrum.
- Applications teams know where their codes lie on the spectrum.
- Can gauge performance on a system using both HPL and HPCG
numbers.
- Problem of HPL execution time still an issue:
- Need a lower cost option. End-to-end HPL runs are too expensive.
- Work in progress.

HPL

* gcaled to reflect the same

unoptimized implementation

, HPL HPC6 HPcG/
Site Computer Cores Rmax
(Pflops) Rank (Pflops) HPL
Tianhe-2 NUDT, HP I
NSCC / Guangzhou | Xeon 12C 2.26Hz + Intel Xeon| 3,120,000, 33.9 1 .580 1.7%
Phi 57C + Custom
RIKEN Advanced | K computer Fujitsu SPARC64 °
Inst for Comp Sci VIIIfx 8C + Custom Aot 1ok 4 < +.1% HP‘ G
DOE/OS Tifaq, .Cr'ay XK7 AMD 16C + .
. Nvidia Kepler GPU 14C + 560, 640 17.6 2 .322 1.8%
Oak Ridge Nat Lab s
ustom
DOE/Os Mira BlueGene/Q, Power BQC > o
Argonne Nat Lab 16C 1.606Hz + Custom Alptls cbet = = oz
. Piz Daint, Cray XC30, Xeon 8C o
Swiss CSCS + Nvidia Kepler 14C + Custom 115,984 6.27 (] .099 1.67%
Leibniz °
Rechenzentrum SuperMUC, Intel 8C + IB 147,456 2.90 12 .0833 2.9% mber of cores
Curie tine nodes Bullx B510 o
CEA/TGCC-GENCI TIntel Xeon 8C 2.7 GHz + IB 79,504 1.36 26 .0491 3.67%
Exploration and
Production |12, Intel Xeon 10C 2.8 6Hz\ (5 c40 | 300 | 11 | .0489 |1.6%
. + Nvidia Kepler 14C + IB
Eni S.p.A.
DOE/Os Edison Cray XC30, Intel Xeon o
L Berkeley Nat Lab 12¢C 2.46Hz + Custom 132,840 1.65 18 04397 | 2.7%
Texas Advanced Stampede, Dell Intel (8c) + o
Computing Center Intel Xeon Phi (61c) + IB 78,848 -881* / SO 1.8%
Beaufix Bullx B710 Intel Xeon .469 °
Meteo France 12¢ 2.7 GHz + IB 24,192 (467%) 79 .0110 2.4%
Prolix Bullx B710 Intel Xeon .464 o
Meteo France 2 7 GHz 12C + IB 23,760 (415%) 80 .00998 | 2.4%
CALMIP Bullx DLC Intel Xeon o
U of Toulouse 10C 2.8 GHz + IB 12,240 .265 | 184 | .00725 | 2.8%
. Wilkes, Intel Xeon 6C 2.6 GHz &
Cambridge U + Nvidia Kepler 14C + I8 3584 .240 | 201 | .00385 | 1.6%
TiTech TUSBAME-KFC Intel Xeon 6C| 5750 | 150 | 436| .00370 |2.5%

2.1 6Hz + IB

Top500

35000000
4

30000000

25000000

20000000

Flop/s

4

15000000

10000000

5000000

0 50 100 150 200 250 300 350 400 450 500
Rank

Comparison HPL & HPCG
Peak, HPL, HPCG

100000000
L
10000000 S
sl
IS I I:
@ el
g 1000000
2 + Rpeak
®* HPL

100000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank

Comparison HPL & HPCG
Peak, HPL, HPCG

100000000
s
10000000 * %
$ 1,
IS S | 3
@ TIPSR
g 1000000 * Rpeak
= . - * HPL
-
= HPCG
100000 == i
. -
-
10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank

c

ICL

| Critical Issues at Peta & Exascale for
Algorlthm and Software Design

Synchronization-reducing algorithms
> Break Fork-Join model
"~ Communication-reducing algorithms
> Use methods which have lower bound on communication
" Mixed precision methods
> 2x speed of ops and 2x speed for data movement

- Autotuning

> Today's machines are too complicated, build "smarts” into
software to adapt to the hardware

" Fault resilient algorithms
> Implement algorithms that can recover from failures/bit
flips
" Reproducibility of results

> Today we can't guarantee this. We understand the issues,
but some of our “colleagues” have a hard time with this.

ICLOr"

Summary

" Major Challenges are ahead for extreme

computing
> Parallelism O(10°)
» Programming issues
> Hybrid
> Peak and HPL may be very misleading
> No where near close to peak for most apps

» Fault Tolerance
> Today Sequoia B6/Q node failure rate is 1.25 failures/
day
> Power
> 50 Gflops/w (today at 2 Gflops/w)

" We will need completely new approaches and

technologies to reach the Exascale level

ICL

‘Collaborators / Software / Support

. PLASMA e el FUJITSU
http://icl.cs.utk.edu/plasma/ ZVIDIA. nag AMDI
[
- MAGMA)\ The MathWorks

http://icl.cs.utk.edu/magmal/

» ['_5 U.S. DEPARTMENT OF
. Quark (RT for Shared Memory) @ WENERGY

http://icl.cs.utk.edu/quark/

. Collaborating partners
University of Tennessee, Knoxville

. PaRSEC(Parallel Runtime Scheduling ‘versity of California, Berkeley

University of Colorado, Denver
and Execution Control) VAGMA PLASMA

http://icl.cs.utk.edu/parsec/ EYEE [E:3[E
x
66 E% %

IcLor-

9/23/14

67

