generate_CMDS
Executes multiple simulation runs systematically in order to calculate two-dimensional (2D) spectra.
Contents
Syntax
generate_CMDS(name)
Description
generate_CMDS(name) calculates 2D spectra for a given entity 'name'.
Detailed Description and Examples
generateCMDS executes multiple simulation runs for various delay and phase combinations of a given pulse sequence. Parameters for the 2D simulation must be defined in advance by the commands setdelayMaxs, setdelaySteps, setPcScheme, setContributions, and setReturnFunction of the CMDS class (see separate documentation of these commands). Calculations can be parallelized (one sequence per core) on a multicore computer system if parallel is set to true (MATLAB® Parallel Computing Toolbox required).
For detailed information on how to use CMDS class see: https://qd-toolbox.org/tutorials/#chapter7.
Example input code for a three-pulse 2D simulation.
s = System; s.lso = true; %allow calculation via Lindblad Superoperators c = CMDS(s); c.parallel = true; %use the parallel computing toolbox
s.setTmax(400*s.fstoau); %length of the simulation time axis: 400 fs s.setTimestep(0.1*s.fstoau);%stepsize of the simulation time axis: 0.1 fs
%Parameters of the external light fields gamma0 = 0; %full rotating frame E0 = 2.0*s.evtoau; %center energy of the external field: 2.0 eV amp = 5e-4; %external field amplitude t_pulse = 20*fstoau; %pulse duration
%Parameters of the 2D simulation c.setdelayMaxs([100 90 90]*s.fstoau); %define offset and maximum delays in femtoseconds. c.setdelaySteps([31 31]); %define number of delay steps c.setPcScheme([1 5 2]); %define the phase cycling scheme c.setContributions([-1 2 -1]); %define a default contribution of the utilized phase cycling scheme c.setReturnFunction(returnExcited); %sets the return function (here: time-integrated population density matrix element of the first excited state) %Note: the return function can be customized by the user
%Parameters of the system gaps = [2.0*s.evtoau]; %define energy gap between the lowest two levels. Here: 2 eV energy separation between ground and excited state of the qbit a = Nlevel(gaps); a.setDipole([1 0], 1); s.addEntity(a, 'qbit'); a.addDissipation('qbit', 200*s.fstoau, [1 0]); s.addDecoherence('qbit', 50*s,fstoau, [1 0]);
% run the simulation c.generate_CMDS('qbit');