piwik-script

English Intern

    Heiße Eruptionen in Süditalien

    06.06.2007

    Wenn ein Vulkan explodiert und seine Eruptionswolke in den Himmel jagt, kann diese in der Luft kollabieren, nach unten fallen und als alles vernichtende Lawine aus glühendem Gestein, Gasen und Asche die Hänge des Berges hinunterrasen. Vulkan-Experten von der Uni Würzburg simulieren diese so genannten pyroklastischen Ströme in Experimenten, die sie zusammen mit italienischen Forschern durchführen.

    "Ausbruch" des künstlichen Vulkans, aufgenommen mit einer Thermalkamera. Foto: Sonja Calvari
    "Ausbruch" des künstlichen Vulkans, aufgenommen mit einer Thermalkamera. Foto: Sonja Calvari

    Die Ströme sind mehrere hundert Grad Celsius heiß und können an die 250 Stundenkilometer schnell werden. Sie fegten zum Beispiel im Jahr 79 den Vesuv hinab und zerstörten Pompeji und andere Siedlungen. Seit 1944 verhält sich dieser Vulkan zwar ruhig. Doch sollte er wieder ausbrechen, droht höchste Gefahr – denn in seiner nächsten Umgebung, im Ballungsraum von Neapel, leben heute rund 1,2 Millionen Menschen.

    In Italien überlegen die Katastrophenschützer darum, zumindest die Häuser im weiteren Umkreis des Vesuv so auszustatten, dass sie einem pyroklastischen Strom widerstehen können. Vorrangig Schulen und Kliniken sollten das sein, Häuser also, in denen möglichst viele Menschen Zuflucht finden können.

    So simulieren die Vulkanforscher Eruptionen und pyroklastische Ströme: Die Kanone wurde über einen Einfülltrichter soeben mit heißer Vulkanasche beschickt und steht kurz vor der Eruption. Links im Bild der Elektroofen, in dem die Asche aufgeheizt wurde. Die Forscher sind (von links): Roberto Sulpizio, Franco Balenzano, Pierfrancesco Dellino. Foto: Bernd Zimanowski

    Allerdings weiß bislang niemand, welche Gewalt die Vulkan-Lawinen entfalten, welchen Druck die Bauten aushalten müssen. Hier kommen die Würzburger ins Spiel: Professor Bernd Zimanowski und sein Team sind dafür bekannt, dass sie in ihrem Physikalisch-Vulkanologischen Labor Eruptionen und andere vulkanische Vorgänge simulieren und analysieren. Darum wurden sie von der italienischen Zivilschutzbehörde, dem dortigen Nationalen Geophysik- und Vulkanologie-Institut sowie von Forschern der Universität Bari für ein gemeinsames Projekt angeworben.

    Seit 2005 experimentieren die Wissenschaftler im Süden Italiens, bei der Gemeinde Spinazzola in Apulien, mit einer Art künstlichem Vulkan: Sie füllen eine Kanone mit bis zu 300 Kilogramm Vulkanasche vom Vesuv und feuern die Ladung mit genau festgelegter Abschussenergie bis zu 40 Meter hoch in die Luft. So entsteht eine Eruptionswolke im Kleinformat.

    Mit dieser Anordnung lassen sich die wichtigsten Aspekte eines echten Vulkanausbruchs simulieren, wie die Wissenschaftler im April im Journal of Geophysical Research berichteten. Die Ablagerungen der künstlichen Eruptionswolke entsprechen denjenigen bei natürlichen Bedingungen. Auch die Größenordnung des Experiments reicht aus, um auf die Verhältnisse an echten Vulkanen hochrechnen zu können.

    Die ersten Versuche erledigten die Forscher der Einfachheit halber mit kalter Vulkanasche. Bei einer echten Eruption aber ist das Material natürlich heiß. Um das zu simulieren, ist wesentlich mehr Aufwand nötig: „Die thermische Leitfähigkeit der Asche ist sehr schlecht. Wollte man 300 Kilo davon auf 300 Grad erhitzen, würde man dafür mehrere Tage brauchen“, erklärt Zimanowski. Darum reduzierten die Wissenschaftler ihr Experiment und verwendeten eine kleinere Kanone, die sie mit nur 30 Kilogramm heißer Asche befüllten. Eine solche Menge konnten sie in einem Elektroofen über Nacht aufheizen.

    Der künstliche Vulkan bricht aus. Im zweiten Bild links oben kollabiert die Wolke und rast dann nach unten. In der unteren Bildreihe wurde die künstliche Eruption mit Thermalkameras aufgenommen. Die heißesten Bereiche sind weiß bis hellgelb, die kalten tiefblau. Aufnahmen: Bernd Zimanowski/Sonja Calvari (Thermalkamera)

    Nach den ersten „heißen Eruptionen“ steht fest, dass sich die Vulkan-Spezialisten das Aufheizen künftig wohl sparen können: „Was den Zeitpunkt des Kollapses der Eruptionswolke angeht, spielt die Temperatur keine Rolle, da waren die Verhältnisse wie bei den ersten Versuchen mit kalter Asche“, sagt Zimanowski. Jetzt müsse man noch auswerten, ob auch die Fließgeschwindigkeit des künstlichen pyroklastischen Stroms identisch ist.

    „Falls ja, können wir unsere weiteren Experimente weniger aufwändig mit der kalten Asche machen“, so der Würzburger Forscher. Auf dem weiteren Arbeitsplan steht – voraussichtlich Anfang 2008 – die genaue physikalische Vermessung der künstlichen pyroklastischen Ströme. Mit Sensorfeldern, die im Umfeld der künstlichen Vulkane angelegt werden, sollen dann unter anderem Druck und Temperatur registriert werden. „Daraus könnten sich erste direkt verwertbare Hinweise für die Zivilschutzbehörden ergeben“, so der Würzburger Professor. Im besten Fall kommt bei dem Projekt heraus, dass sich Gebäude bautechnisch gegen pyroklastische Ströme sichern lassen. Im Umfeld des Vesuv wäre dafür genug Bedarf.

    „Large-scale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results“: Pierfrancesco Dellino, Bernd Zimanowski, Ralf Büttner, Luigi La Volpe, Daniela Mele, and Roberto Sulpizio, 10. April 2007, Journal of Geophysical Research, Vol. 112, Nr. B4, B04202, doi:10.1029/2006JB004313

    Weitere Informationen: Prof. Dr. Bernd Zimanowski, T (0931) 31-2379, zimano@geologie.uni-wuerzburg.de Internet: www.geologie.uni-wuerzburg.de/physvulk/index-deutsch.html

    Von Robert Emmerich

    Zurück

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Kontakt

    Universität Würzburg
    Sanderring 2
    97070 Würzburg

    Tel.: +49 931 31-0
    Fax: +49 931 31-82600

    Suche Ansprechpartner

    Sanderring
    Sanderring
    Röntgenring
    Röntgenring
    Hubland Nord
    Hubland Nord
    Hubland Süd
    Hubland Süd
    Campus Medizin
    Campus Medizin